Real-time prediction and inverse design of multiphase CO2 trapping in deep saline aquifers using machine learning enhanced by SHAP analysis

IF 5.5 0 ENERGY & FUELS
Shixuan Cheng , Kai Zhang , Yihao Li , Zhangxin Chen
{"title":"Real-time prediction and inverse design of multiphase CO2 trapping in deep saline aquifers using machine learning enhanced by SHAP analysis","authors":"Shixuan Cheng ,&nbsp;Kai Zhang ,&nbsp;Yihao Li ,&nbsp;Zhangxin Chen","doi":"10.1016/j.jgsce.2025.205782","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate forecasting of multiphase CO<sub>2</sub> behavior is critical for safe large-scale deployment of carbon capture and storage projects. A total of 9835 high fidelity CMG GEM simulations, covering geological and operational uncertainties in deep saline aquifers, were generated and subsequently used to benchmark thirteen c algorithms for the concurrent prediction of CO<sub>2</sub> trapping mechanisms. Attention based tabular networks TabTransformerLite and SAINTLite together with the decision ensemble NODELite outperformed linear, support vector, tree ensemble, and fully connected neural network baselines. TabTransformerLite secured the best performance with nRMSE of 0.033, R<sup>2</sup> of 0.92, and minimal fold to fold variability. Shapley value analysis placed depth and permeability as primary controls on dissolved, residual, and mineral precipitated CO<sub>2</sub> compared to the injection rate and porosity. An inverse design workflow used the trained model to identify operating windows that lift mineral trapping above the ninetieth percentile, indicating optimal depth near 2.25 km, permeability above 1.6 Darcy, and injection rates between 7.5 and 14.7 × 10<sup>3</sup> m<sup>3</sup>/day. The resulting framework connects model predictions to geographic information systems for site screening and to real time digital twin optimization, providing a scalable millisecond speed alternative to physics-based simulation for CO<sub>2</sub> storage planning and monitoring.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"145 ","pages":"Article 205782"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925002468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate forecasting of multiphase CO2 behavior is critical for safe large-scale deployment of carbon capture and storage projects. A total of 9835 high fidelity CMG GEM simulations, covering geological and operational uncertainties in deep saline aquifers, were generated and subsequently used to benchmark thirteen c algorithms for the concurrent prediction of CO2 trapping mechanisms. Attention based tabular networks TabTransformerLite and SAINTLite together with the decision ensemble NODELite outperformed linear, support vector, tree ensemble, and fully connected neural network baselines. TabTransformerLite secured the best performance with nRMSE of 0.033, R2 of 0.92, and minimal fold to fold variability. Shapley value analysis placed depth and permeability as primary controls on dissolved, residual, and mineral precipitated CO2 compared to the injection rate and porosity. An inverse design workflow used the trained model to identify operating windows that lift mineral trapping above the ninetieth percentile, indicating optimal depth near 2.25 km, permeability above 1.6 Darcy, and injection rates between 7.5 and 14.7 × 103 m3/day. The resulting framework connects model predictions to geographic information systems for site screening and to real time digital twin optimization, providing a scalable millisecond speed alternative to physics-based simulation for CO2 storage planning and monitoring.
基于SHAP分析增强机器学习的深层盐水含水层多相CO2捕获实时预测与逆设计
多相二氧化碳行为的准确预测对于大规模安全部署碳捕集与封存项目至关重要。总共生成了9835个高保真CMG GEM模拟,涵盖了深层咸水含水层的地质和操作不确定性,随后用于13种c算法的基准,以同时预测二氧化碳捕获机制。基于注意力的表格网络TabTransformerLite和SAINTLite以及决策集成NODELite优于线性、支持向量、树集成和全连接神经网络基线。TabTransformerLite获得了最佳性能,nRMSE为0.033,R2为0.92,折叠间变异最小。Shapley值分析认为,与注入速率和孔隙度相比,深度和渗透率是影响溶解、残留和矿物沉淀CO2的主要因素。反设计工作流程使用训练过的模型来确定将矿物圈闭提升到第90百分位以上的操作窗口,表明最佳深度接近2.25 km,渗透率高于1.6达西,注入速率在7.5至14.7 × 103 m3/天之间。由此产生的框架将模型预测与地理信息系统连接起来,用于现场筛选和实时数字孪生优化,为二氧化碳存储规划和监测提供可扩展的毫秒级速度替代基于物理的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信