Plant growth-promoting rhizobacteria-mediated remediation of glyphosate-contaminated tea plantation soils through restoration of nutrient cycling and microbial diversity
Xu Zhang , Min Cai , Jiaji Lin , Weidong Wang , Yujie Jiao , Litang Lu
{"title":"Plant growth-promoting rhizobacteria-mediated remediation of glyphosate-contaminated tea plantation soils through restoration of nutrient cycling and microbial diversity","authors":"Xu Zhang , Min Cai , Jiaji Lin , Weidong Wang , Yujie Jiao , Litang Lu","doi":"10.1016/j.pedobi.2025.151090","DOIUrl":null,"url":null,"abstract":"<div><div>Glyphosate is a broad-spectrum herbicide widely used in tea plantations worldwide, however, its excessive use has exerted significant negative impacts on soil ecology and tea plant growth. Therefore, effective ecological remediation strategies are urgently required. In this study, a three-year field experiment was conducted in a glyphosate-treated tea plantation soil, where a plant growth-promoting rhizobacteria (PGPR) compound inoculant was applied following herbicide treatment. Metagenomic analysis was further performed to evaluate the remediation efficacy of PGPR. The results demonstrated that PGPR application significantly increased soil pH and nutrient levels (e.g., organic carbon, available nitrogen, phosphorus, and potassium) and enhanced soil enzyme activities, including protease, urease, acid phosphatase. PGPR inoculation also restored microbial diversity, optimized community structure, and upregulated functional genes associated with carbon, nitrogen, and phosphorus cycling. Moreover, tea leaf quality was improved, as evidenced by an increase in amino acid content and a reduction in phenol-ammonia ratio. Overall, the introduction of PGPR effectively mitigated the adverse impacts of glyphosate, thereby improving soil health and tea quality. These findings indicate that PGPR represents an environmentally friendly bioremediation strategy capable of restoring glyphosate-contaminated tea plantation soils and its ecosystem functions, thereby underscoring its practical value and ecological significance for sustainable tea plantation management.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"113 ","pages":"Article 151090"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003140562500071X","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glyphosate is a broad-spectrum herbicide widely used in tea plantations worldwide, however, its excessive use has exerted significant negative impacts on soil ecology and tea plant growth. Therefore, effective ecological remediation strategies are urgently required. In this study, a three-year field experiment was conducted in a glyphosate-treated tea plantation soil, where a plant growth-promoting rhizobacteria (PGPR) compound inoculant was applied following herbicide treatment. Metagenomic analysis was further performed to evaluate the remediation efficacy of PGPR. The results demonstrated that PGPR application significantly increased soil pH and nutrient levels (e.g., organic carbon, available nitrogen, phosphorus, and potassium) and enhanced soil enzyme activities, including protease, urease, acid phosphatase. PGPR inoculation also restored microbial diversity, optimized community structure, and upregulated functional genes associated with carbon, nitrogen, and phosphorus cycling. Moreover, tea leaf quality was improved, as evidenced by an increase in amino acid content and a reduction in phenol-ammonia ratio. Overall, the introduction of PGPR effectively mitigated the adverse impacts of glyphosate, thereby improving soil health and tea quality. These findings indicate that PGPR represents an environmentally friendly bioremediation strategy capable of restoring glyphosate-contaminated tea plantation soils and its ecosystem functions, thereby underscoring its practical value and ecological significance for sustainable tea plantation management.
期刊介绍:
Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments.
Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions.
We publish:
original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects);
descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research;
innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and
short notes reporting novel observations of ecological significance.