Prediction of deep learning algorithms for the microemulsion generation conditions in complex environments

IF 6.3 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Hao Li, Tianshun Ding, Shengyang Tao
{"title":"Prediction of deep learning algorithms for the microemulsion generation conditions in complex environments","authors":"Hao Li,&nbsp;Tianshun Ding,&nbsp;Shengyang Tao","doi":"10.1016/j.jtice.2025.106414","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Constructing high-quality datasets for AI-driven microemulsion prediction remains challenging due to limitations in chip design, imaging hardware, and fluid dynamics. Conventional semi-empirical models suffer from poor accuracy and generalizability in complex nonlinear systems, while traditional microfluidic chips often yield non-spherical droplets. Optical constraints in capillary-based systems further hinder data acquisition.</div></div><div><h3>Methods</h3><div>A deep learning framework integrates three components: (1) A multi-branch CNN with residual modules and self-attention (RAM-CNN) for robust droplet/fluid morphology recognition; (2) GAN-LGBMnet, combining adversarial networks and LightGBM, to augment small datasets and analyze key features; (3) A multi-output neural network (MO-DNN) predicting single/double-emulsion parameters. The system is deployed via an intuitive GUI (MICA) for non-specialist use.</div></div><div><h3>Significant Findings</h3><div>RAM-CNN achieves 100 % fluid-regime and 95.8 % droplet-morphology recognition accuracy, maintaining &gt;91 % performance under ±28 % brightness variations. Enhanced by GAN-LGBMnet, MO-DNN predicts droplet diameters and generation rates with MAPE &lt;7 % for both emulsion types. The MICA platform demonstrates &lt;10 % error on unseen data, enabling precise emulsion design. This work bridges theoretical models with practical microfluidic optimization through automated, user-friendly AI tools.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"179 ","pages":"Article 106414"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187610702500464X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Constructing high-quality datasets for AI-driven microemulsion prediction remains challenging due to limitations in chip design, imaging hardware, and fluid dynamics. Conventional semi-empirical models suffer from poor accuracy and generalizability in complex nonlinear systems, while traditional microfluidic chips often yield non-spherical droplets. Optical constraints in capillary-based systems further hinder data acquisition.

Methods

A deep learning framework integrates three components: (1) A multi-branch CNN with residual modules and self-attention (RAM-CNN) for robust droplet/fluid morphology recognition; (2) GAN-LGBMnet, combining adversarial networks and LightGBM, to augment small datasets and analyze key features; (3) A multi-output neural network (MO-DNN) predicting single/double-emulsion parameters. The system is deployed via an intuitive GUI (MICA) for non-specialist use.

Significant Findings

RAM-CNN achieves 100 % fluid-regime and 95.8 % droplet-morphology recognition accuracy, maintaining >91 % performance under ±28 % brightness variations. Enhanced by GAN-LGBMnet, MO-DNN predicts droplet diameters and generation rates with MAPE <7 % for both emulsion types. The MICA platform demonstrates <10 % error on unseen data, enabling precise emulsion design. This work bridges theoretical models with practical microfluidic optimization through automated, user-friendly AI tools.

Abstract Image

复杂环境下微乳液生成条件的深度学习算法预测
由于芯片设计、成像硬件和流体动力学的限制,为人工智能驱动的微乳液预测构建高质量的数据集仍然具有挑战性。传统的半经验模型在复杂非线性系统中存在精度差和泛化性差的问题,而传统的微流控芯片往往产生非球形液滴。基于毛细血管系统的光学限制进一步阻碍了数据采集。方法深度学习框架由三个部分组成:(1)基于残差模块和自关注的多分支CNN (RAM-CNN),实现对液滴/流体形态的鲁棒识别;(2) GAN-LGBMnet,结合对抗网络和LightGBM,增强小数据集并分析关键特征;(3)多输出神经网络(MO-DNN)预测单/双乳液参数。该系统通过一个直观的GUI (MICA)部署,供非专业人员使用。ram - cnn实现了100%的流体状态和95.8%的液滴形态识别准确率,在±28%的亮度变化下保持了91%的性能。在GAN-LGBMnet的增强下,MO-DNN预测两种乳液类型的液滴直径和生成速率的MAPE均为7%。MICA平台在未见数据上显示出10%的误差,从而实现了精确的乳液设计。这项工作通过自动化、用户友好的人工智能工具将理论模型与实际微流控优化联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信