Heat transfer analysis of Ethylene Glycol based hybrid nanofluid (Au–Ag) flow over a porous medium with gyrotactic microorganisms: Levenberg–Marquardt backpropagation approach

Q1 Mathematics
R. Shobika , B. Vennila , K. Loganathan
{"title":"Heat transfer analysis of Ethylene Glycol based hybrid nanofluid (Au–Ag) flow over a porous medium with gyrotactic microorganisms: Levenberg–Marquardt backpropagation approach","authors":"R. Shobika ,&nbsp;B. Vennila ,&nbsp;K. Loganathan","doi":"10.1016/j.padiff.2025.101292","DOIUrl":null,"url":null,"abstract":"<div><div>The proposed study employs the Levenberg–Marquardt backpropagation approach with artificial neural networks to examine the heat transfer in hybrid nanofluid flow over a porous embedded vertical stretching sheet in a Darcy–Forchheimer medium. This study seeks to investigate the interplay between gyrotactic microorganisms, magnetic fields, mixed convection, and temperature in hybrid nanofluids including Silver (Ag), Gold (Au), and the base fluid Ethylene Glycol <span><math><mrow><msub><mrow><mtext>C</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>H</mtext></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mtext>O</mtext></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> utilizing the Cattaneo–Christov heat flux model. It improves our comprehension of their behavior and potential uses. This intricate system of highly non-linear governing equations is simplified to a set of ordinary differential equations by similarity transformations and solved numerically using the Bvp4c method. Alongside the numerical method, Artificial Neural Networks (ANNs) are utilized to precisely illustrate intricate patterns, with an Mean Square Error (MSE) of 0.00043 and strengthening the impact of the numerical findings. This study demonstrates that the utilization of Au–Ag/<span><math><mrow><msub><mrow><mtext>C</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>H</mtext></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mtext>O</mtext></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> hybrid nanoparticles enhances thermal conductivity, augments volume fraction, and indicates that the application of a magnetic field and thermal radiation markedly improves the dispersion of microorganisms and the formation of hybrid nanofluids, resulting in elevated heat transfer rates. Especially, ANN-based regressor for sensitivity analysis is employed to forecast essential physical parameters, including the skin friction coefficient, Nusselt number, Sherwood number, and Density of Microorganisms, while also assessing the significance of factors affecting nanofluid properties, thereby demonstrating excellent concordance with prior studies and validating the robustness of the proposed model.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"16 ","pages":"Article 101292"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The proposed study employs the Levenberg–Marquardt backpropagation approach with artificial neural networks to examine the heat transfer in hybrid nanofluid flow over a porous embedded vertical stretching sheet in a Darcy–Forchheimer medium. This study seeks to investigate the interplay between gyrotactic microorganisms, magnetic fields, mixed convection, and temperature in hybrid nanofluids including Silver (Ag), Gold (Au), and the base fluid Ethylene Glycol C2H6O2 utilizing the Cattaneo–Christov heat flux model. It improves our comprehension of their behavior and potential uses. This intricate system of highly non-linear governing equations is simplified to a set of ordinary differential equations by similarity transformations and solved numerically using the Bvp4c method. Alongside the numerical method, Artificial Neural Networks (ANNs) are utilized to precisely illustrate intricate patterns, with an Mean Square Error (MSE) of 0.00043 and strengthening the impact of the numerical findings. This study demonstrates that the utilization of Au–Ag/C2H6O2 hybrid nanoparticles enhances thermal conductivity, augments volume fraction, and indicates that the application of a magnetic field and thermal radiation markedly improves the dispersion of microorganisms and the formation of hybrid nanofluids, resulting in elevated heat transfer rates. Especially, ANN-based regressor for sensitivity analysis is employed to forecast essential physical parameters, including the skin friction coefficient, Nusselt number, Sherwood number, and Density of Microorganisms, while also assessing the significance of factors affecting nanofluid properties, thereby demonstrating excellent concordance with prior studies and validating the robustness of the proposed model.
乙二醇基混合纳米流体(Au-Ag)在多孔介质上与回旋微生物流动的传热分析:Levenberg-Marquardt反向传播方法
该研究采用Levenberg-Marquardt反向传播方法和人工神经网络来研究混合纳米流体在达西-福希海默介质中多孔嵌入垂直拉伸片上的传热。本研究旨在利用Cattaneo-Christov热流密度模型,研究包括银(Ag)、金(Au)和基液乙二醇C2H6O2在内的混合纳米流体中回旋微生物、磁场、混合对流和温度之间的相互作用。它提高了我们对它们的行为和潜在用途的理解。通过相似变换将这一复杂的高度非线性控制方程组简化为一组常微分方程,并采用Bvp4c方法进行数值求解。除了数值方法,人工神经网络(ann)被用来精确地说明复杂的模式,均方误差(MSE)为0.00043,并加强了数值结果的影响。本研究表明,使用Au-Ag /C2H6O2杂化纳米颗粒可以提高导热性,增加体积分数,并表明磁场和热辐射的应用显著改善了微生物的分散和杂化纳米流体的形成,从而提高了传热速率。特别是,基于神经网络的敏感性分析回归因子用于预测基本物理参数,包括皮肤摩擦系数,Nusselt数,Sherwood数和微生物密度,同时还评估了影响纳米流体性质的因素的重要性,从而证明了与先前研究的良好一致性,并验证了所提出模型的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信