Zhao Wang , Xiaowen Rong , Haoran Zhao , Yue Yang , Fusheng Liang , Cheng Fan
{"title":"Modelling of abrasive particle distribution for pre-mixed abrasive water jet peening surface","authors":"Zhao Wang , Xiaowen Rong , Haoran Zhao , Yue Yang , Fusheng Liang , Cheng Fan","doi":"10.1016/j.cirpj.2025.09.010","DOIUrl":null,"url":null,"abstract":"<div><div>Abrasive water jet technology, as a non-traditional machining process, impinges on the workpiece surface with abrasive particles driven by the water jet beam to achieve material removal or surface modification. The abrasive particle distribution is the key factor affecting on the process quality, especially for Abrasive Water Jet Peening (AWJP) process. However, there is still limited research on the abrasive particle distribution in the AWJP process, especially regarding the distribution under variable traverse speeds and variable curvature movements of the abrasive water jet beam, which forms the basis for controlling abrasive water jet coverage, particularly on curved surfaces. In this study, an abrasive particle distribution prediction model is proposed for AWJP under different pump pressures, variable traverse speeds (accelerations), and various curvature radius by combining finite element and analytical modeling approaches. Validation experiments were conducted, and both simulation and experimental results under different parameters follow Gaussian distributions. The maximum prediction error was only 18.6 % across 24 comparisons from 15 experimental sets, confirming the feasibility and accuracy of the proposed model. Meanwhile, the influence of these three parameters on abrasive particle distribution laws is investigated respectively through comparisons between simulation and experimental results. The findings reveal that pump pressure primarily affects abrasive particle velocity and position distribution; traverse speed mainly influences abrasive particle position distribution and the percentage of particles at the central region; curvature radius predominantly affects the midline position of the abrasive particle distribution curve. This study not only provide a deep understanding of abrasive particle distribution laws under varying pump pressures, traverse speeds, and curvature radii, but the proposed model also offers valuable guidance for achieving uniform abrasive particle coverage on free-form surfaces during AWJP.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"63 ","pages":"Pages 135-155"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581725001646","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Abrasive water jet technology, as a non-traditional machining process, impinges on the workpiece surface with abrasive particles driven by the water jet beam to achieve material removal or surface modification. The abrasive particle distribution is the key factor affecting on the process quality, especially for Abrasive Water Jet Peening (AWJP) process. However, there is still limited research on the abrasive particle distribution in the AWJP process, especially regarding the distribution under variable traverse speeds and variable curvature movements of the abrasive water jet beam, which forms the basis for controlling abrasive water jet coverage, particularly on curved surfaces. In this study, an abrasive particle distribution prediction model is proposed for AWJP under different pump pressures, variable traverse speeds (accelerations), and various curvature radius by combining finite element and analytical modeling approaches. Validation experiments were conducted, and both simulation and experimental results under different parameters follow Gaussian distributions. The maximum prediction error was only 18.6 % across 24 comparisons from 15 experimental sets, confirming the feasibility and accuracy of the proposed model. Meanwhile, the influence of these three parameters on abrasive particle distribution laws is investigated respectively through comparisons between simulation and experimental results. The findings reveal that pump pressure primarily affects abrasive particle velocity and position distribution; traverse speed mainly influences abrasive particle position distribution and the percentage of particles at the central region; curvature radius predominantly affects the midline position of the abrasive particle distribution curve. This study not only provide a deep understanding of abrasive particle distribution laws under varying pump pressures, traverse speeds, and curvature radii, but the proposed model also offers valuable guidance for achieving uniform abrasive particle coverage on free-form surfaces during AWJP.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.