Boosting photocatalytic hydrogen evolution via intrinsic electric fields in 2D Janus AlXY2 (X = Ga, In; Y = S, Se, Te) monolayers

IF 8.7 Q1 CHEMISTRY, PHYSICAL
Talha Zafer , Nabil Khossossi , Poulumi Dey
{"title":"Boosting photocatalytic hydrogen evolution via intrinsic electric fields in 2D Janus AlXY2 (X = Ga, In; Y = S, Se, Te) monolayers","authors":"Talha Zafer ,&nbsp;Nabil Khossossi ,&nbsp;Poulumi Dey","doi":"10.1016/j.apsadv.2025.100851","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic water splitting represents a promising approach for sustainable hydrogen production, with two-dimensional Janus materials offering unique advantages through intrinsic electric fields that enhance charge separation. We present a comprehensive first-principles investigation of Janus AlXY<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (X = Ga, In; Y = S, Se, Te) monolayers using density functional theory and ab initio molecular dynamics simulations. All six systems exhibit excellent structural, thermal, and mechanical stability with HSE06 bandgaps of 2.029–2.969 eV suitable for UV-light absorption. The asymmetric structure generates strong intrinsic electric fields of 5.391–6.437 V perpendicular to the monolayer plane, significantly enhancing photogenerated charge carrier separation. While pristine monolayers show poor hydrogen evolution reaction (HER) activity with Gibbs free energies of 1.937–2.371 eV, strategic introduction of metal vacancies dramatically improves performance, reducing <span><math><mi>Δ</mi></math></span>G<span><math><msub><mrow></mrow><mrow><mi>H</mi></mrow></msub></math></span> values to −0.371 to +0.607 eV and approaching optimal catalytic conditions. These findings demonstrate the potential of defect-engineered 2D Janus AlXY<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> materials for efficient photocatalytic hydrogen production.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"30 ","pages":"Article 100851"},"PeriodicalIF":8.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925001618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic water splitting represents a promising approach for sustainable hydrogen production, with two-dimensional Janus materials offering unique advantages through intrinsic electric fields that enhance charge separation. We present a comprehensive first-principles investigation of Janus AlXY2 (X = Ga, In; Y = S, Se, Te) monolayers using density functional theory and ab initio molecular dynamics simulations. All six systems exhibit excellent structural, thermal, and mechanical stability with HSE06 bandgaps of 2.029–2.969 eV suitable for UV-light absorption. The asymmetric structure generates strong intrinsic electric fields of 5.391–6.437 V perpendicular to the monolayer plane, significantly enhancing photogenerated charge carrier separation. While pristine monolayers show poor hydrogen evolution reaction (HER) activity with Gibbs free energies of 1.937–2.371 eV, strategic introduction of metal vacancies dramatically improves performance, reducing ΔGH values to −0.371 to +0.607 eV and approaching optimal catalytic conditions. These findings demonstrate the potential of defect-engineered 2D Janus AlXY2 materials for efficient photocatalytic hydrogen production.
利用本征电场促进二维Janus AlXY2 (X = Ga, in; Y = S, Se, Te)单层光催化析氢
光催化水分解是一种很有前途的可持续制氢方法,二维Janus材料通过本征电场增强电荷分离,具有独特的优势。我们利用密度泛函理论和从头算分子动力学模拟对Janus AlXY2 (X = Ga, In; Y = S, Se, Te)单层进行了全面的第一性原理研究。HSE06的带隙为2.029 ~ 2.969 eV,适合紫外吸收,具有良好的结构稳定性、热稳定性和机械稳定性。不对称结构产生了垂直于单层平面的5.391-6.437 V的强本征电场,显著增强了光生载流子分离。虽然原始单层膜的析氢反应活性较差,吉布斯自由能为1.937 ~ 2.371 eV,但有策略地引入金属空位显著提高了性能,将ΔGH值降至−0.371 ~ +0.607 eV,接近最佳催化条件。这些发现证明了缺陷工程2D Janus AlXY2材料在高效光催化制氢方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信