Tandem catalysis over Cu@Co/CoFe-P metal-alloy heterostructure achieving ampere-level nitrate-to-ammonia electrosynthesis

IF 14.9 1区 化学 Q1 Energy
Laiji Xu , Wei Guo , Simeng Yu , Zhenlin Mo , Jiangzhou Qin , Yiwen Chen , Baojun Liu
{"title":"Tandem catalysis over Cu@Co/CoFe-P metal-alloy heterostructure achieving ampere-level nitrate-to-ammonia electrosynthesis","authors":"Laiji Xu ,&nbsp;Wei Guo ,&nbsp;Simeng Yu ,&nbsp;Zhenlin Mo ,&nbsp;Jiangzhou Qin ,&nbsp;Yiwen Chen ,&nbsp;Baojun Liu","doi":"10.1016/j.jechem.2025.08.057","DOIUrl":null,"url":null,"abstract":"<div><div>The electrocatalytic reduction of nitrate to ammonia (NO<sub>3</sub><sup>−</sup>RR) offers a sustainable alternative to energy-intensive industrial NH<sub>3</sub> synthesis. Tandem catalysis has shown promise in overcoming the multi-step complexity of NO<sub>3</sub><sup>−</sup>RR, yet challenges remain in optimizing performance and elucidating tandem mechanisms. Herein, we report a Cu@Co/CoFe-P tandem electrocatalyst featuring a phosphorus-doped heterostructure with dual active sites (Cu-P and Co/CoFe-P). This catalyst achieves an exceptional NH<sub>3</sub> yield of 175.40 mg h<sup>−1</sup> cm<sup>−2</sup> and a record-high current density exceeding 2 A cm<sup>−2</sup>, with the electro-synthesized NH<sub>3</sub> directly converted into NH<sub>4</sub>Cl. In situ spectroscopic analysis and density functional theory (DFT) calculations reveal a novel desorption-reactivation tandem mechanism: (1) the Cu-P domain preferentially reduces NO<sub>3</sub><sup>−</sup> to *NO<sub>2</sub>, which desorbs as stable NO<sub>2</sub><sup>−</sup>; (2) the Co/CoFe-P domain subsequently reactivates NO<sub>2</sub><sup>−</sup>, and converts it efficiently into NH<sub>3</sub>. Moreover, phosphorus doping enhances *H supply, while Fe alloying with Co promotes NO<sub>2</sub><sup>−</sup> hydrogenation, ensuring an efficient and synchronized tandem pathway for NO<sub>3</sub><sup>−</sup>RR. The proposed *NO<sub>2</sub> desorption-reactivation mechanism deepens the understanding of NO<sub>3</sub><sup>−</sup>RR tandem process, thereby paving the way for designing more efficient tandem electrocatalysts.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"112 ","pages":"Pages 329-338"},"PeriodicalIF":14.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209549562500717X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic reduction of nitrate to ammonia (NO3RR) offers a sustainable alternative to energy-intensive industrial NH3 synthesis. Tandem catalysis has shown promise in overcoming the multi-step complexity of NO3RR, yet challenges remain in optimizing performance and elucidating tandem mechanisms. Herein, we report a Cu@Co/CoFe-P tandem electrocatalyst featuring a phosphorus-doped heterostructure with dual active sites (Cu-P and Co/CoFe-P). This catalyst achieves an exceptional NH3 yield of 175.40 mg h−1 cm−2 and a record-high current density exceeding 2 A cm−2, with the electro-synthesized NH3 directly converted into NH4Cl. In situ spectroscopic analysis and density functional theory (DFT) calculations reveal a novel desorption-reactivation tandem mechanism: (1) the Cu-P domain preferentially reduces NO3 to *NO2, which desorbs as stable NO2; (2) the Co/CoFe-P domain subsequently reactivates NO2, and converts it efficiently into NH3. Moreover, phosphorus doping enhances *H supply, while Fe alloying with Co promotes NO2 hydrogenation, ensuring an efficient and synchronized tandem pathway for NO3RR. The proposed *NO2 desorption-reactivation mechanism deepens the understanding of NO3RR tandem process, thereby paving the way for designing more efficient tandem electrocatalysts.

Abstract Image

在Cu@Co/咖啡- p金属合金异质结构上的串联催化实现安培级硝酸盐-氨电合成
硝酸电催化还原制氨(NO3 - RR)为能源密集型工业氨合成提供了可持续的替代方案。串联催化已显示出克服NO3−RR多步骤复杂性的希望,但在优化性能和阐明串联机制方面仍存在挑战。本文报道了一种Cu@Co/ coffee - p串联电催化剂,其具有磷掺杂异质结构,具有双活性位点(Cu-P和Co/ coffee - p)。该催化剂的NH3产率达到175.40 mg h−1 cm−2,电流密度超过2 a cm−2,电合成的NH3直接转化为NH4Cl。原位光谱分析和密度泛函理论(DFT)计算揭示了一种新的脱附-再活化机制:(1)Cu-P结构域优先将NO3−还原为*NO2,并以稳定的NO2−解吸;(2) Co/ fe - p结构域随后重新激活NO2 -,并将其有效地转化为NH3。此外,磷的掺杂增加了*H的供应,而Fe与Co的合金化促进了NO2−的氢化,确保了NO3−RR的高效同步串联途径。提出的*NO2解吸-再活化机理加深了对NO3−RR串联工艺的认识,从而为设计更高效的串联电催化剂铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信