Room-temperature laser crystallization of oxygen vacancy-engineered zirconia for additive manufacturing

IF 11.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Jaime A. Benavides-Guerrero , Luis F. Gerlein , Astrid C. Angel-Ospina , Paul Fourmont , Abhiroop Bhattacharya , Abbas Zirakjou , Fabrice Vaussenat , Caroline A. Ross , Sylvain G. Cloutier
{"title":"Room-temperature laser crystallization of oxygen vacancy-engineered zirconia for additive manufacturing","authors":"Jaime A. Benavides-Guerrero ,&nbsp;Luis F. Gerlein ,&nbsp;Astrid C. Angel-Ospina ,&nbsp;Paul Fourmont ,&nbsp;Abhiroop Bhattacharya ,&nbsp;Abbas Zirakjou ,&nbsp;Fabrice Vaussenat ,&nbsp;Caroline A. Ross ,&nbsp;Sylvain G. Cloutier","doi":"10.1016/j.addma.2025.104969","DOIUrl":null,"url":null,"abstract":"<div><div>We demonstrate how strategically engineered oxygen vacancies enable room-temperature laser crystallization of zirconia (ZrO₂) in ambient air. Our sol-gel chelation synthesis creates amorphous ZrO₂ nanoparticles with a high concentration of oxygen vacancies that fundamentally alter the material's energy landscape. These defects create sub-bandgap states that facilitate visible light absorption and dramatically reduce the energy barrier for crystallization. Under low-energy laser irradiation (405–532 nm), oxygen vacancies mediate a rapid phase transformation mechanism where atmospheric oxygen interacts with vacancy sites, triggering ionic rearrangement and crystallization without conventional high-temperature processing. For comparison purposes, this study also explores the thermal crystallization of black zirconia in an oxidative atmosphere, a process typically performed under vacuum or inert conditions. Through comprehensive characterization (FTIR, EPR, XPS, XRD, Raman), we establish that vacancy-mediated crystallization produces monoclinic ZrO₂ with preserved defect structures, yielding a distinctive black phase with 25.6 % oxygen vacancy concentration, significantly higher than thermally processed counterparts (9.2 %). This vacancy-enabled crystallization circumvents the need for extreme temperatures (&gt;1170°C) typically required for ZrO₂ processing, making it compatible with additive manufacturing. Using a modified 3D printer with a 405 nm laser, we demonstrate patterned crystallization of complex architectures, opening new possibilities for fabricating advanced ZrO₂-based devices for photocatalysis, fuel cells, and energy applications. This work provides fundamental insights into defect-mediated phase transformations and establishes a new paradigm for room-temperature ceramic processing.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"111 ","pages":"Article 104969"},"PeriodicalIF":11.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425003331","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate how strategically engineered oxygen vacancies enable room-temperature laser crystallization of zirconia (ZrO₂) in ambient air. Our sol-gel chelation synthesis creates amorphous ZrO₂ nanoparticles with a high concentration of oxygen vacancies that fundamentally alter the material's energy landscape. These defects create sub-bandgap states that facilitate visible light absorption and dramatically reduce the energy barrier for crystallization. Under low-energy laser irradiation (405–532 nm), oxygen vacancies mediate a rapid phase transformation mechanism where atmospheric oxygen interacts with vacancy sites, triggering ionic rearrangement and crystallization without conventional high-temperature processing. For comparison purposes, this study also explores the thermal crystallization of black zirconia in an oxidative atmosphere, a process typically performed under vacuum or inert conditions. Through comprehensive characterization (FTIR, EPR, XPS, XRD, Raman), we establish that vacancy-mediated crystallization produces monoclinic ZrO₂ with preserved defect structures, yielding a distinctive black phase with 25.6 % oxygen vacancy concentration, significantly higher than thermally processed counterparts (9.2 %). This vacancy-enabled crystallization circumvents the need for extreme temperatures (>1170°C) typically required for ZrO₂ processing, making it compatible with additive manufacturing. Using a modified 3D printer with a 405 nm laser, we demonstrate patterned crystallization of complex architectures, opening new possibilities for fabricating advanced ZrO₂-based devices for photocatalysis, fuel cells, and energy applications. This work provides fundamental insights into defect-mediated phase transformations and establishes a new paradigm for room-temperature ceramic processing.
用于增材制造的氧空位工程氧化锆的室温激光结晶
我们展示了策略性设计的氧空位如何在环境空气中实现氧化锆(ZrO₂)的室温激光结晶。我们的溶胶-凝胶螯合合成产生了具有高浓度氧空位的无定形ZrO₂纳米颗粒,从根本上改变了材料的能量格局。这些缺陷产生亚带隙状态,促进可见光吸收,并显著降低结晶的能量屏障。在低能激光照射(405-532 nm)下,氧空位介导了一个快速相变机制,大气氧与空位位点相互作用,触发离子重排和结晶,而无需常规的高温处理。为了进行比较,本研究还探讨了氧化气氛中黑氧化锆的热结晶,这一过程通常在真空或惰性条件下进行。通过综合表征(FTIR, EPR, XPS, XRD, Raman),我们确定了空位中介结晶产生具有保留缺陷结构的单斜ZrO 2,产生独特的黑色相,氧空位浓度为25.6 %,显著高于热处理产物(9.2 %)。这种空位结晶避免了ZrO 2加工通常需要的极端温度(>1170°C),使其与增材制造兼容。利用改进的3D打印机和405 nm激光器,我们展示了复杂结构的图案结晶,为制造用于光催化、燃料电池和能源应用的先进ZrO 2基器件开辟了新的可能性。这项工作为缺陷介导的相变提供了基本的见解,并为室温陶瓷加工建立了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信