AirGPT: Spatio-temporal large language model for air quality prediction

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhonghang Li , Tianyi Chen , Yong Xu
{"title":"AirGPT: Spatio-temporal large language model for air quality prediction","authors":"Zhonghang Li ,&nbsp;Tianyi Chen ,&nbsp;Yong Xu","doi":"10.1016/j.inffus.2025.103730","DOIUrl":null,"url":null,"abstract":"<div><div>Air pollution poses a critical threat to public health, ecosystems, and climate stability worldwide. Accurate air quality prediction is essential for informed policy-making, health risk mitigation, and environmental management, enabling proactive responses to pollution events and long-term planning for sustainable urban development. Despite advances, deep learning models for air quality prediction still face three critical challenges: heavy reliance on abundant historical data, difficulty in effectively fusing diverse information sources, and a lack of interpretability. To address these issues, we propose AirGPT, a large language model framework for air quality prediction. AirGPT integrates a specialized spatio-temporal encoder with a novel spatio-temporal instruction-tuning paradigm, enabling it to efficiently model complex spatio-temporal dependencies and perform sophisticated data fusion. Furthermore, our Chain-of-Thought distillation mechanism allows the model to externalize its predictive reasoning in a transparent, human-readable format, thereby enhancing interpretability. Experimental results demonstrate that AirGPT achieves state-of-the-art accuracy on air quality prediction tasks, particularly in data-scarce and zero-shot scenarios. By integrating interpretable reasoning with transparent predictive outputs, AirGPT provides a robust and reliable framework to support informed environmental decision-making. Our source code is available at: <span><span>https://anonymous.4open.science/r/AirGPT-6ACC</span><svg><path></path></svg></span></div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103730"},"PeriodicalIF":15.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525007924","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Air pollution poses a critical threat to public health, ecosystems, and climate stability worldwide. Accurate air quality prediction is essential for informed policy-making, health risk mitigation, and environmental management, enabling proactive responses to pollution events and long-term planning for sustainable urban development. Despite advances, deep learning models for air quality prediction still face three critical challenges: heavy reliance on abundant historical data, difficulty in effectively fusing diverse information sources, and a lack of interpretability. To address these issues, we propose AirGPT, a large language model framework for air quality prediction. AirGPT integrates a specialized spatio-temporal encoder with a novel spatio-temporal instruction-tuning paradigm, enabling it to efficiently model complex spatio-temporal dependencies and perform sophisticated data fusion. Furthermore, our Chain-of-Thought distillation mechanism allows the model to externalize its predictive reasoning in a transparent, human-readable format, thereby enhancing interpretability. Experimental results demonstrate that AirGPT achieves state-of-the-art accuracy on air quality prediction tasks, particularly in data-scarce and zero-shot scenarios. By integrating interpretable reasoning with transparent predictive outputs, AirGPT provides a robust and reliable framework to support informed environmental decision-making. Our source code is available at: https://anonymous.4open.science/r/AirGPT-6ACC
AirGPT:空气质量时空大语言预测模型
空气污染对全球公众健康、生态系统和气候稳定构成严重威胁。准确的空气质量预测对于知情决策、减轻健康风险和环境管理至关重要,能够对污染事件作出积极反应,并为可持续城市发展进行长期规划。尽管取得了进展,但用于空气质量预测的深度学习模型仍然面临三个关键挑战:严重依赖大量历史数据,难以有效融合各种信息源,以及缺乏可解释性。为了解决这些问题,我们提出了AirGPT,一个用于空气质量预测的大型语言模型框架。AirGPT集成了一个专门的时空编码器和一个新颖的时空指令调优范例,使其能够有效地模拟复杂的时空依赖关系并执行复杂的数据融合。此外,我们的思维链蒸馏机制允许模型以透明的、人类可读的格式外化其预测推理,从而增强可解释性。实验结果表明,AirGPT在空气质量预测任务上达到了最先进的精度,特别是在数据稀缺和零射击场景下。通过将可解释推理与透明的预测输出相结合,AirGPT提供了一个强大而可靠的框架,以支持知情的环境决策。我们的源代码可从https://anonymous.4open.science/r/AirGPT-6ACC获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信