Jiaming Wang , Xiaoting Zhong , Jie Zhao , Xiaofan Shen , Mengyu Wang , Junhao He , Xiaohan Meng , Qiuling Chen , Xinrui Lu , Liang Wang , Chao Yue
{"title":"Spatiotemporal changes in global cropland fire activity from 2003 to 2020","authors":"Jiaming Wang , Xiaoting Zhong , Jie Zhao , Xiaofan Shen , Mengyu Wang , Junhao He , Xiaohan Meng , Qiuling Chen , Xinrui Lu , Liang Wang , Chao Yue","doi":"10.1016/j.gloplacha.2025.105074","DOIUrl":null,"url":null,"abstract":"<div><div>Agricultural straw burning is a significant source of greenhouse gas emissions, adversely affecting regional human health and air quality. Understanding the spatiotemporal patterns of agricultural fires is crucial for developing effective emissions reduction strategies in cropland to mitigate climate change. Although it is reported that cropland fires have been decreasing over the past two decades, the trends of global cropland fires on seasonal and diurnal scales remain poorly quantified, limiting a complete understanding of their spatiotemporal dynamics. This study analyzes global cropland fire activity from 2003 to 2020 at annual, seasonal, and diurnal scales, using multiple satellite-based burned area datasets, active fire products, and cropland classification datasets. The results show that from 2003 to 2020, global cropland burned area, active fire detections, and fire intensity all exhibited significant decreasing trends (<em>p</em> < 0.05), with relative changes of −43.5 %, −30.3 %, and − 3.5 %, respectively. The most significant decreases in cropland burned area and active fire detections occurred in Africa, while the largest decline in fire intensity was observed in Asia. Moreover, cropland fire activity displayed notable seasonal and diurnal variations. On the seasonal scale, the largest declines in cropland burned area, active fire detections, and fire intensity were observed in December, August, and November, respectively. Notably, fire intensity showed a significant increasing trend (<em>p</em> < 0.05) in April and September. On the diurnal scale, the decrease in cropland active fire detections was primarily driven by daytime activity; however, the rate of decline in fire intensity at night was about 1.5 times that during the day. These findings offer valuable insights into the comprehensive spatiotemporal patterns of global cropland fires, providing a foundation for more effective cropland management and carbon mitigation strategies.</div></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"255 ","pages":"Article 105074"},"PeriodicalIF":4.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818125003832","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Agricultural straw burning is a significant source of greenhouse gas emissions, adversely affecting regional human health and air quality. Understanding the spatiotemporal patterns of agricultural fires is crucial for developing effective emissions reduction strategies in cropland to mitigate climate change. Although it is reported that cropland fires have been decreasing over the past two decades, the trends of global cropland fires on seasonal and diurnal scales remain poorly quantified, limiting a complete understanding of their spatiotemporal dynamics. This study analyzes global cropland fire activity from 2003 to 2020 at annual, seasonal, and diurnal scales, using multiple satellite-based burned area datasets, active fire products, and cropland classification datasets. The results show that from 2003 to 2020, global cropland burned area, active fire detections, and fire intensity all exhibited significant decreasing trends (p < 0.05), with relative changes of −43.5 %, −30.3 %, and − 3.5 %, respectively. The most significant decreases in cropland burned area and active fire detections occurred in Africa, while the largest decline in fire intensity was observed in Asia. Moreover, cropland fire activity displayed notable seasonal and diurnal variations. On the seasonal scale, the largest declines in cropland burned area, active fire detections, and fire intensity were observed in December, August, and November, respectively. Notably, fire intensity showed a significant increasing trend (p < 0.05) in April and September. On the diurnal scale, the decrease in cropland active fire detections was primarily driven by daytime activity; however, the rate of decline in fire intensity at night was about 1.5 times that during the day. These findings offer valuable insights into the comprehensive spatiotemporal patterns of global cropland fires, providing a foundation for more effective cropland management and carbon mitigation strategies.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.