The de Rham cohomology of covers with a cyclic p-Sylow subgroup

IF 0.8 2区 数学 Q2 MATHEMATICS
Jędrzej Garnek , Aristides Kontogeorgis
{"title":"The de Rham cohomology of covers with a cyclic p-Sylow subgroup","authors":"Jędrzej Garnek ,&nbsp;Aristides Kontogeorgis","doi":"10.1016/j.jalgebra.2025.08.032","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a smooth projective curve over a field <em>k</em> with an action of a finite group <em>G</em>. A well-known result of Chevalley and Weil describes the <span><math><mi>k</mi><mo>[</mo><mi>G</mi><mo>]</mo></math></span>-module structure of cohomologies of <em>X</em> in the case when the characteristic of <em>k</em> does not divide #<em>G</em>. It is unlikely that such a formula can be derived in the general case, since the representation theory of groups with non-cyclic <em>p</em>-Sylow subgroups is wild in characteristic <em>p</em>. The goal of this article is to show that when <em>G</em> has a cyclic <em>p</em>-Sylow subgroup, the <em>G</em>-structure of the de Rham cohomology of <em>X</em> is completely determined by the ramification data. In principle, this leads to new formulas in the spirit of Chevalley and Weil for such curves. We provide such an explicit description of the de Rham cohomology in the cases when <span><math><mi>G</mi><mo>=</mo><mi>Z</mi><mo>/</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and when the <em>p</em>-Sylow subgroup of <em>G</em> is normal of order <em>p</em>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 151-178"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005186","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a smooth projective curve over a field k with an action of a finite group G. A well-known result of Chevalley and Weil describes the k[G]-module structure of cohomologies of X in the case when the characteristic of k does not divide #G. It is unlikely that such a formula can be derived in the general case, since the representation theory of groups with non-cyclic p-Sylow subgroups is wild in characteristic p. The goal of this article is to show that when G has a cyclic p-Sylow subgroup, the G-structure of the de Rham cohomology of X is completely determined by the ramification data. In principle, this leads to new formulas in the spirit of Chevalley and Weil for such curves. We provide such an explicit description of the de Rham cohomology in the cases when G=Z/pn and when the p-Sylow subgroup of G is normal of order p.
具有环p-Sylow子群的盖的de Rham上同
设X是域k上的光滑投影曲线,作用为有限群G。Chevalley和Weil的一个著名的结果描述了当k的特征不除#G时,X上同调的k[G]-模结构。在一般情况下,不可能推导出这样的公式,因为具有非循环p- sylow子群的群的表示理论在特征p上是野的。本文的目的是表明,当G具有循环p- sylow子群时,X的de Rham上同调的G结构完全由分支数据决定。原则上,这就产生了符合Chevalley和Weil精神的新公式。当G=Z/pn和G的p- sylow子群是p阶正规时,我们给出了这样一个关于de Rham上同的显式描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信