Yogeshwar R. Baste , Vijaya J. Ushir , Bhagwat K. Uphade , Jagdish N. Ghotekar
{"title":"FeS and Ni-doped FeS nanomaterials as bifunctional photocatalysts and gas sensors","authors":"Yogeshwar R. Baste , Vijaya J. Ushir , Bhagwat K. Uphade , Jagdish N. Ghotekar","doi":"10.1016/j.nanoso.2025.101555","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, pristine Iron sulphide (FeS) and nickel-doped Iron sulphide (Ni-FeS) nanomaterials were efficiently hydrothermally synthesized. The synthesized nanomaterial was scientifically investigated by various analytical techniques like FTIR, UV–visible spectroscopy, XRD, SEM-EDAX, and HR-TEM-SAED. The study reveals that synthesized FeS is crystalline hexagonal (troilite phase) with an average crystallite size of 17.21 nm. Ni-FeS crystal structure remains unchanged, but XRD peaks become broader compared to FeS due to Ni. The HR-TEM result confirms the particle sizes of FeS and Ni-FeS as 50–130 nm and 24 nm, respectively. Surface morphology of FeS and Ni-FeS appeared as a uniform distribution and agglomeration of particles, depicted by SEM. EDAX analysis confirms elemental composition. UV–visible and Tauc plot studies give band gap energies of 2.03 and 1.71 eV for FeS and Ni-FeS, respectively. The photodegradation of malachite green (MG) dye was scientifically evaluated to assess the photocatalytic capacity of both FeS and Ni-FeS. 90.05 % dye degradation was achieved by Ni-FeS, as compared to FeS 88.01 % under identical conditions. The gas sensing investigation studies give a good response and recovery time for H<sub>2</sub>S gas at 120 °C. All these results highlight the benefits of Ni-FeS and FeS as a promising, stable, and efficient material.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"44 ","pages":"Article 101555"},"PeriodicalIF":5.4500,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X25001258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, pristine Iron sulphide (FeS) and nickel-doped Iron sulphide (Ni-FeS) nanomaterials were efficiently hydrothermally synthesized. The synthesized nanomaterial was scientifically investigated by various analytical techniques like FTIR, UV–visible spectroscopy, XRD, SEM-EDAX, and HR-TEM-SAED. The study reveals that synthesized FeS is crystalline hexagonal (troilite phase) with an average crystallite size of 17.21 nm. Ni-FeS crystal structure remains unchanged, but XRD peaks become broader compared to FeS due to Ni. The HR-TEM result confirms the particle sizes of FeS and Ni-FeS as 50–130 nm and 24 nm, respectively. Surface morphology of FeS and Ni-FeS appeared as a uniform distribution and agglomeration of particles, depicted by SEM. EDAX analysis confirms elemental composition. UV–visible and Tauc plot studies give band gap energies of 2.03 and 1.71 eV for FeS and Ni-FeS, respectively. The photodegradation of malachite green (MG) dye was scientifically evaluated to assess the photocatalytic capacity of both FeS and Ni-FeS. 90.05 % dye degradation was achieved by Ni-FeS, as compared to FeS 88.01 % under identical conditions. The gas sensing investigation studies give a good response and recovery time for H2S gas at 120 °C. All these results highlight the benefits of Ni-FeS and FeS as a promising, stable, and efficient material.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .