Toward greener logistics: uncovering key enablers of the physical internet using AI-powered theme analysis

IF 6.8 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Enna Hirata , Varsolo Sunio , Russell G. Thompson , Greg Foliente
{"title":"Toward greener logistics: uncovering key enablers of the physical internet using AI-powered theme analysis","authors":"Enna Hirata ,&nbsp;Varsolo Sunio ,&nbsp;Russell G. Thompson ,&nbsp;Greg Foliente","doi":"10.1016/j.clscn.2025.100263","DOIUrl":null,"url":null,"abstract":"<div><div>Transitioning to a zero-carbon, sustainable logistics ecosystem requires a fundamental shift in how physical, digital, and organizational systems interact. The Physical Internet (PI) presents a transformative vision for logistics and supply chain management by providing a blueprint for decarbonized, circular, and resilient operations. However, the complex, interdisciplinary nature of its knowledge base presents challenges for coordinated global implementation. This study introduces a dual-model natural language processing (NLP) approach combining transformer-based topic modeling (BERTopic) with maximal marginal relevance (MMR) and generative pretrained transformer (GPT) techniques. This hybrid approach enables the extraction and synthesis of key research themes from over 2600 scientific publications on PI. Thematic analysis revealed eight critical domains, ranging from smart infrastructure and energy systems to cybersecurity and governance that are foundational to PI’s sustainable development and adoption. Furthermore, we evaluated the alignment of these themes with the PI roadmaps and the UN sustainable development goals (SDGs), especially SDG 9 (Industry, Innovation and Infrastructure), SDG 11 (Sustainable Cities and Communities), and SDG 13 (Climate Action). Results highlight the importance of interoperability, digital twin technologies, renewable energy integration, and secure data exchange for achieving greener and more adaptive logistics networks. This work provides a scalable, data-driven methodology for strategic decision-making and knowledge synthesis, thereby supporting the sustainable transformation of logistics and supply chains.</div></div>","PeriodicalId":100253,"journal":{"name":"Cleaner Logistics and Supply Chain","volume":"17 ","pages":"Article 100263"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Logistics and Supply Chain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772390925000629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Transitioning to a zero-carbon, sustainable logistics ecosystem requires a fundamental shift in how physical, digital, and organizational systems interact. The Physical Internet (PI) presents a transformative vision for logistics and supply chain management by providing a blueprint for decarbonized, circular, and resilient operations. However, the complex, interdisciplinary nature of its knowledge base presents challenges for coordinated global implementation. This study introduces a dual-model natural language processing (NLP) approach combining transformer-based topic modeling (BERTopic) with maximal marginal relevance (MMR) and generative pretrained transformer (GPT) techniques. This hybrid approach enables the extraction and synthesis of key research themes from over 2600 scientific publications on PI. Thematic analysis revealed eight critical domains, ranging from smart infrastructure and energy systems to cybersecurity and governance that are foundational to PI’s sustainable development and adoption. Furthermore, we evaluated the alignment of these themes with the PI roadmaps and the UN sustainable development goals (SDGs), especially SDG 9 (Industry, Innovation and Infrastructure), SDG 11 (Sustainable Cities and Communities), and SDG 13 (Climate Action). Results highlight the importance of interoperability, digital twin technologies, renewable energy integration, and secure data exchange for achieving greener and more adaptive logistics networks. This work provides a scalable, data-driven methodology for strategic decision-making and knowledge synthesis, thereby supporting the sustainable transformation of logistics and supply chains.
迈向绿色物流:利用人工智能主题分析揭示实体互联网的关键推动因素
向零碳、可持续的物流生态系统过渡,需要从根本上改变物理、数字和组织系统的相互作用方式。物理互联网(PI)通过提供脱碳、循环和弹性运营的蓝图,为物流和供应链管理提供了一个变革性的愿景。然而,其知识库的复杂性和跨学科性质为协调全球实施提出了挑战。本研究提出了一种双模型自然语言处理(NLP)方法,将基于变压器的主题建模(BERTopic)与最大边际相关性(MMR)和生成式预训练变压器(GPT)技术相结合。这种混合方法可以从PI上2600多份科学出版物中提取和综合关键研究主题。专题分析揭示了八个关键领域,从智能基础设施和能源系统到网络安全和治理,这些都是PI可持续发展和采用的基础。此外,我们评估了这些主题与PI路线图和联合国可持续发展目标(SDG)的一致性,特别是可持续发展目标9(工业、创新和基础设施)、可持续发展目标11(可持续城市和社区)和可持续发展目标13(气候行动)。研究结果强调了互操作性、数字孪生技术、可再生能源集成和安全数据交换对于实现更绿色、更具适应性的物流网络的重要性。这项工作为战略决策和知识综合提供了一种可扩展的、数据驱动的方法,从而支持物流和供应链的可持续转型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信