Multi-echelon open location-routing problem with time window and mixed last-mile delivery for optimizing food supply chains

IF 6.8 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Ali Mokhtari-Moghadam , Pourya Pourhejazy , Xinan Yang , Abdella Salhi
{"title":"Multi-echelon open location-routing problem with time window and mixed last-mile delivery for optimizing food supply chains","authors":"Ali Mokhtari-Moghadam ,&nbsp;Pourya Pourhejazy ,&nbsp;Xinan Yang ,&nbsp;Abdella Salhi","doi":"10.1016/j.clscn.2025.100266","DOIUrl":null,"url":null,"abstract":"<div><div>The pandemic experience made online grocery shopping the new normal. The perishable and Fast-Moving Consumer Goods (FMCG) supply chain should be adjusted to extend their distribution capabilities and adapt to the new business environment. This study introduces the Three-Echelon Open Location-Routing Problem with Time Windows (3E-OLRPTW) with simultaneous home delivery and store pickup services for optimizing last-mile delivery operations. A Mixed-Integer Non-Linear Programming (MINLP) formulation and an improved metaheuristic, the Hybrid Genetic Algorithm (HGA), are developed using a customized local search method. The objective is to minimize total operating costs while accounting for the time window and capacity constraints. Numerical experiments are conducted to evaluate the performance of the developed solution method, comparing it with the improved hybrid variants of the Genetic Algorithm (GA), Artificial Bee Colony (ABC), Simulated Annealing (SA), and Imperialist Competitive Algorithm (ICA) algorithms. Statistical tests confirm that the HGA algorithm outperforms the benchmarks in terms of solution quality and convergence.</div></div>","PeriodicalId":100253,"journal":{"name":"Cleaner Logistics and Supply Chain","volume":"17 ","pages":"Article 100266"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Logistics and Supply Chain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772390925000654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The pandemic experience made online grocery shopping the new normal. The perishable and Fast-Moving Consumer Goods (FMCG) supply chain should be adjusted to extend their distribution capabilities and adapt to the new business environment. This study introduces the Three-Echelon Open Location-Routing Problem with Time Windows (3E-OLRPTW) with simultaneous home delivery and store pickup services for optimizing last-mile delivery operations. A Mixed-Integer Non-Linear Programming (MINLP) formulation and an improved metaheuristic, the Hybrid Genetic Algorithm (HGA), are developed using a customized local search method. The objective is to minimize total operating costs while accounting for the time window and capacity constraints. Numerical experiments are conducted to evaluate the performance of the developed solution method, comparing it with the improved hybrid variants of the Genetic Algorithm (GA), Artificial Bee Colony (ABC), Simulated Annealing (SA), and Imperialist Competitive Algorithm (ICA) algorithms. Statistical tests confirm that the HGA algorithm outperforms the benchmarks in terms of solution quality and convergence.
带时间窗口的多级开放位置路径问题及混合最后一英里配送优化食品供应链
疫情经历使网上购物成为新常态。易腐品和快速消费品(FMCG)供应链应进行调整,以扩大其分销能力,适应新的商业环境。本研究引入了带时间窗口的三阶开放位置路径问题(3E-OLRPTW),同时提供送货上门和上门取货服务,以优化最后一英里的送货作业。采用自定义的局部搜索方法,提出了混合整数非线性规划(MINLP)公式和改进的元启发式混合遗传算法(HGA)。目标是在考虑时间窗口和容量限制的情况下,最大限度地降低总运营成本。通过数值实验来评估所开发的求解方法的性能,并将其与遗传算法(GA)、人工蜂群(ABC)、模拟退火(SA)和帝国主义竞争算法(ICA)算法的改进混合变体进行比较。统计测试证实,HGA算法在解质量和收敛性方面优于基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信