L. Liu , F. Liu , D. Zenkert , M. Åkermo , M. Fagerström
{"title":"Mesostructural origins of the anisotropic compressive properties of low-density closed-cell foams: A deeper understanding","authors":"L. Liu , F. Liu , D. Zenkert , M. Åkermo , M. Fagerström","doi":"10.1016/j.jmps.2025.106344","DOIUrl":null,"url":null,"abstract":"<div><div>Many closed-cell foams exhibit an elongated cell shape in the foam rise direction, resulting in anisotropic compressive properties, e.g. modulus and strength. Nevertheless, the underlying deformation mechanisms and how cell shape anisotropy induces this mechanical anisotropy are not yet fully understood, in particular for the foams with a high cell face fraction and low relative density. Moreover, the impacts of mesostructural stochastics are often overlooked.</div><div>This contribution conducts a systematic numerical study on the anisotropic compressive behaviour of low-density closed-cell foams (with a relative density <span><math><mrow><mo><</mo><mn>0</mn><mo>.</mo><mn>15</mn></mrow></math></span>), which accounts for cell shape anisotropy, cell structure and different mesostructural stochastics. Representative volume elements (RVE) of foam mesostructures are modelled, with cell walls described as Reissner–Mindlin shells in a finite rotation setting. A mixed stress–strain driven homogenization scheme is introduced, which allows for enforcing an overall uniaxial stress state. Uniaxial compressive loadings in different global directions are applied.</div><div>Quantitative analysis of the cell wall deformation behaviour confirms the dominant role of membrane deformation in the initial elastic region, while the bending contribution gets important only after buckling, followed by membrane yielding. Based on the identified deformation mechanisms, analytical models are developed that relate mechanical anisotropy to cell shape anisotropy. It is found that cell shape anisotropy translates into the anisotropy of compressive properties through three pathways, cell load-bearing area fraction, cell wall buckling strength and cell wall inclination angle. Besides, the resulting mechanical anisotropy is strongly affected by the cell shape anisotropy stochastics while almost insensitive to the cell size and cell wall thickness stochastics. The present findings provide deeper insights into the relationships between the anisotropic compressive properties and mesostructures of low-density closed-cell foams.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"206 ","pages":"Article 106344"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625003187","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many closed-cell foams exhibit an elongated cell shape in the foam rise direction, resulting in anisotropic compressive properties, e.g. modulus and strength. Nevertheless, the underlying deformation mechanisms and how cell shape anisotropy induces this mechanical anisotropy are not yet fully understood, in particular for the foams with a high cell face fraction and low relative density. Moreover, the impacts of mesostructural stochastics are often overlooked.
This contribution conducts a systematic numerical study on the anisotropic compressive behaviour of low-density closed-cell foams (with a relative density ), which accounts for cell shape anisotropy, cell structure and different mesostructural stochastics. Representative volume elements (RVE) of foam mesostructures are modelled, with cell walls described as Reissner–Mindlin shells in a finite rotation setting. A mixed stress–strain driven homogenization scheme is introduced, which allows for enforcing an overall uniaxial stress state. Uniaxial compressive loadings in different global directions are applied.
Quantitative analysis of the cell wall deformation behaviour confirms the dominant role of membrane deformation in the initial elastic region, while the bending contribution gets important only after buckling, followed by membrane yielding. Based on the identified deformation mechanisms, analytical models are developed that relate mechanical anisotropy to cell shape anisotropy. It is found that cell shape anisotropy translates into the anisotropy of compressive properties through three pathways, cell load-bearing area fraction, cell wall buckling strength and cell wall inclination angle. Besides, the resulting mechanical anisotropy is strongly affected by the cell shape anisotropy stochastics while almost insensitive to the cell size and cell wall thickness stochastics. The present findings provide deeper insights into the relationships between the anisotropic compressive properties and mesostructures of low-density closed-cell foams.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.