Generalized invariants meet constitutive neural networks: A novel framework for hyperelastic materials

IF 6 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Denisa Martonová , Alain Goriely , Ellen Kuhl
{"title":"Generalized invariants meet constitutive neural networks: A novel framework for hyperelastic materials","authors":"Denisa Martonová ,&nbsp;Alain Goriely ,&nbsp;Ellen Kuhl","doi":"10.1016/j.jmps.2025.106352","DOIUrl":null,"url":null,"abstract":"<div><div>The major challenge in determining a hyperelastic model for a given material is the choice of invariants and the selection how the strain energy function depends functionally on these invariants. Here we introduce a new data-driven framework that simultaneously discovers appropriate invariants and constitutive models for isotropic incompressible hyperelastic materials. Our approach identifies both the most suitable invariants in a class of generalized invariants and the corresponding strain energy function directly from experimental observations. Unlike previous methods that rely on fixed invariant choices or sequential fitting procedures, our method integrates the discovery process into a single neural network architecture. By looking at a continuous family of possible invariants, the model can flexibly adapt to different material behaviors. We demonstrate the effectiveness of this approach using popular benchmark datasets for rubber and brain tissue. For rubber, the method recovers a stretch-dominated formulation consistent with classical models. For brain tissue, it identifies a formulation sensitive to small stretches, capturing the nonlinear shear response characteristic of soft biological matter. Compared to traditional and neural-network-based models, our framework provides improved predictive accuracy and interpretability across a wide range of deformation states. This unified strategy offers a robust tool for automated and physically meaningful model discovery in hyperelasticity.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"206 ","pages":"Article 106352"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625003266","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The major challenge in determining a hyperelastic model for a given material is the choice of invariants and the selection how the strain energy function depends functionally on these invariants. Here we introduce a new data-driven framework that simultaneously discovers appropriate invariants and constitutive models for isotropic incompressible hyperelastic materials. Our approach identifies both the most suitable invariants in a class of generalized invariants and the corresponding strain energy function directly from experimental observations. Unlike previous methods that rely on fixed invariant choices or sequential fitting procedures, our method integrates the discovery process into a single neural network architecture. By looking at a continuous family of possible invariants, the model can flexibly adapt to different material behaviors. We demonstrate the effectiveness of this approach using popular benchmark datasets for rubber and brain tissue. For rubber, the method recovers a stretch-dominated formulation consistent with classical models. For brain tissue, it identifies a formulation sensitive to small stretches, capturing the nonlinear shear response characteristic of soft biological matter. Compared to traditional and neural-network-based models, our framework provides improved predictive accuracy and interpretability across a wide range of deformation states. This unified strategy offers a robust tool for automated and physically meaningful model discovery in hyperelasticity.
广义不变量满足本构神经网络:超弹性材料的新框架
确定给定材料的超弹性模型的主要挑战是选择不变量以及选择应变能函数如何在功能上依赖于这些不变量。在这里,我们引入了一个新的数据驱动框架,同时发现合适的各向同性不可压缩超弹性材料的不变量和本构模型。我们的方法直接从实验观察中确定了一类广义不变量中最合适的不变量和相应的应变能函数。与以前依赖固定不变选择或顺序拟合过程的方法不同,我们的方法将发现过程集成到单个神经网络架构中。通过观察一个连续的可能不变量族,该模型可以灵活地适应不同的材料行为。我们使用橡胶和脑组织的流行基准数据集证明了这种方法的有效性。对于橡胶,该方法恢复了与经典模型一致的拉伸主导公式。对于脑组织,它确定了一种对小拉伸敏感的配方,捕捉了软生物物质的非线性剪切响应特征。与传统的和基于神经网络的模型相比,我们的框架在广泛的变形状态下提供了更高的预测准确性和可解释性。这种统一的策略为超弹性中的自动化和物理上有意义的模型发现提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信