{"title":"A numerical method based on quasi-Lagrangian Voronoi cells for two-phase flows with large density contrast","authors":"Ondřej Kincl , Ilya Peshkov , Walter Boscheri","doi":"10.1016/j.compfluid.2025.106813","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we use a moving Voronoi and sharp interface approach for simulating two-phase flows. At every time step, the mesh is generated anew from Voronoi seeds that behave as material points. The paper is a continuation of our previous works on moving Voronoi meshes where we have considered single phase incompressible and compressible flows. In the context of quasi-Lagrangian Voronoi simulations, problems with large density contrasts (such as water and air interface) are being treated here for the first time to the best of our knowledge. This is made possible through a remapping stage, which relies on a filtering of a color function. The resulting semi-implicit scheme is conservative and robust, allowing us to simulate both compressible and incompressible flows, including shock waves and surface tension.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"302 ","pages":"Article 106813"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025002737","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we use a moving Voronoi and sharp interface approach for simulating two-phase flows. At every time step, the mesh is generated anew from Voronoi seeds that behave as material points. The paper is a continuation of our previous works on moving Voronoi meshes where we have considered single phase incompressible and compressible flows. In the context of quasi-Lagrangian Voronoi simulations, problems with large density contrasts (such as water and air interface) are being treated here for the first time to the best of our knowledge. This is made possible through a remapping stage, which relies on a filtering of a color function. The resulting semi-implicit scheme is conservative and robust, allowing us to simulate both compressible and incompressible flows, including shock waves and surface tension.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.