Maximum power point tracking strategies for solar PV systems: A review of current methods and future innovations

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Lyu Guanghua , Arsalan Muhammad Soomar , Syed Hadi Hussain Shah , Shoaib Shaikh , Piotr Musznicki
{"title":"Maximum power point tracking strategies for solar PV systems: A review of current methods and future innovations","authors":"Lyu Guanghua ,&nbsp;Arsalan Muhammad Soomar ,&nbsp;Syed Hadi Hussain Shah ,&nbsp;Shoaib Shaikh ,&nbsp;Piotr Musznicki","doi":"10.1016/j.rineng.2025.107227","DOIUrl":null,"url":null,"abstract":"<div><div>Photovoltaic (PV) systems are critical for solar energy conversion but face performance degradation due to dynamic environmental conditions. Maximum power point tracking (MPPT) algorithms optimize PV operation to ensure maximum power extraction under such variability. This review comprehensively classifies and analyzes MPPT techniques into three categories: classical, adaptive, and hybrid methods. Classical approaches including Perturb and Observe (P&amp;O) and Incremental Conductance (IncCond) remain widely adopted for their simplicity and low-cost implementation yet exhibit limitations under rapid environmental transients. Adaptive methods (e.g., Fuzzy Logic Controllers and Artificial Neural Networks) enhance accuracy and adaptability at the cost of computational resources. Hybrid techniques synergize classical and adaptive strategies to balance stability with responsiveness. The study further examines how temperature, irradiance fluctuations, and partial shading impact PV performance and MPPT efficacy. Critical evaluation reveals strengths and limitations of current methods, highlighting opportunities for reliability and efficiency improvements.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107227"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025032827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photovoltaic (PV) systems are critical for solar energy conversion but face performance degradation due to dynamic environmental conditions. Maximum power point tracking (MPPT) algorithms optimize PV operation to ensure maximum power extraction under such variability. This review comprehensively classifies and analyzes MPPT techniques into three categories: classical, adaptive, and hybrid methods. Classical approaches including Perturb and Observe (P&O) and Incremental Conductance (IncCond) remain widely adopted for their simplicity and low-cost implementation yet exhibit limitations under rapid environmental transients. Adaptive methods (e.g., Fuzzy Logic Controllers and Artificial Neural Networks) enhance accuracy and adaptability at the cost of computational resources. Hybrid techniques synergize classical and adaptive strategies to balance stability with responsiveness. The study further examines how temperature, irradiance fluctuations, and partial shading impact PV performance and MPPT efficacy. Critical evaluation reveals strengths and limitations of current methods, highlighting opportunities for reliability and efficiency improvements.
太阳能光伏系统的最大功率点跟踪策略:当前方法和未来创新的回顾
光伏(PV)系统是太阳能转换的关键,但由于动态环境条件的影响,其性能会下降。最大功率点跟踪(MPPT)算法优化光伏运行,保证在这种可变性下的最大功率提取。本文将MPPT技术分为经典、自适应和混合三大类。经典的方法,包括摄动和观察(P&;O)和增量电导(IncCond),因其简单和低成本的实现而被广泛采用,但在快速环境瞬变下表现出局限性。自适应方法(例如,模糊逻辑控制器和人工神经网络)以计算资源为代价提高准确性和适应性。混合技术将经典策略和自适应策略结合起来,以平衡稳定性和响应性。该研究进一步探讨了温度、辐照度波动和部分遮阳对光伏性能和MPPT效率的影响。批判性评估揭示了当前方法的优势和局限性,强调了可靠性和效率改进的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信