{"title":"Optoionics – Controlling ions with light","authors":"A. Gouder , B.V. Lotsch","doi":"10.1016/j.ssi.2025.117018","DOIUrl":null,"url":null,"abstract":"<div><div>Optoionics has recently emerged at the intersection of optoelectronics and solid state ionics, triggered by fundamental work on light-induced ionic conductivity enhancement in methylammonium lead iodide (MAPI). This perspective traces the evolution of optoionics from early 20th century studies on photoionics to contemporary research, elucidating the semantic nuances and historical development of light–ion interactions. We follow the first observations such as copper photoionization and subsequent conceptual extensions such as molecular photoionics and photo-ionic cells, leading on to the current definition and understanding of optoionics. We then proceed to apply this understanding on light–ion interactions in carbon nitrides, distinguishing between intrinsic and extrinsic optoionic effects depending on whether one or more distinct phases are involved. This nuanced understanding is essential for the design of optoionic devices that exploit light–ion interactions to couple light harvesting and electrochemical energy storage. Finally, we provide an outlook on emerging optoionic devices at the intersection of energy conversion and storage and discuss smart circuit elements that integrate optoionic principles for advanced technological applications.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"431 ","pages":"Article 117018"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825002371","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Optoionics has recently emerged at the intersection of optoelectronics and solid state ionics, triggered by fundamental work on light-induced ionic conductivity enhancement in methylammonium lead iodide (MAPI). This perspective traces the evolution of optoionics from early 20th century studies on photoionics to contemporary research, elucidating the semantic nuances and historical development of light–ion interactions. We follow the first observations such as copper photoionization and subsequent conceptual extensions such as molecular photoionics and photo-ionic cells, leading on to the current definition and understanding of optoionics. We then proceed to apply this understanding on light–ion interactions in carbon nitrides, distinguishing between intrinsic and extrinsic optoionic effects depending on whether one or more distinct phases are involved. This nuanced understanding is essential for the design of optoionic devices that exploit light–ion interactions to couple light harvesting and electrochemical energy storage. Finally, we provide an outlook on emerging optoionic devices at the intersection of energy conversion and storage and discuss smart circuit elements that integrate optoionic principles for advanced technological applications.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.