Sara Adeeba Ismail , Lulu Jiang , Hui Guo , Wenhao Li , Donglin Han
{"title":"Hydration and conduction behavior of Sc and Zr-substituted Ba7Nb4MoO20","authors":"Sara Adeeba Ismail , Lulu Jiang , Hui Guo , Wenhao Li , Donglin Han","doi":"10.1016/j.ssi.2025.117027","DOIUrl":null,"url":null,"abstract":"<div><div>Ba<sub>7</sub>Nb<sub>4</sub>MoO<sub>20</sub> has acceptably high ionic conductivity at 600–800 °C and is attractive for potential application in high temperature solid state electrochemical devices. Up to now, most of the research focuses on isovalent and donor-doping to improve the electrical properties of Ba<sub>7</sub>Nb<sub>4</sub>MoO<sub>20</sub>. In this work, an acceptor-doping strategy was taken by doping Sc and Zr to partially substitute Nb. More vacant oxygen sites thereby form for charge compensation, leading to the increasing proton concentration following the compositional sequence of hydrated Ba<sub>7</sub>Nb<sub>4</sub>MoO<sub>20</sub> < Ba<sub>7</sub>Nb<sub>3.97</sub>Zr<sub>0.03</sub>MoO<sub>19.985</sub> < Ba<sub>7</sub>Nb<sub>3.97</sub>Sc<sub>0.03</sub>MoO<sub>19.97</sub>. Notably, both the H<sub>2</sub>O/D<sub>2</sub>O isotope effect and EMF measurements indicate that the proton conduction – if there is any – is negligibly small, and the Sc and Zr-doped Ba<sub>7</sub>Nb<sub>4</sub>MoO<sub>20</sub> is essentially an oxide ion conductor in the temperature range studied in this work.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"431 ","pages":"Article 117027"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825002462","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ba7Nb4MoO20 has acceptably high ionic conductivity at 600–800 °C and is attractive for potential application in high temperature solid state electrochemical devices. Up to now, most of the research focuses on isovalent and donor-doping to improve the electrical properties of Ba7Nb4MoO20. In this work, an acceptor-doping strategy was taken by doping Sc and Zr to partially substitute Nb. More vacant oxygen sites thereby form for charge compensation, leading to the increasing proton concentration following the compositional sequence of hydrated Ba7Nb4MoO20 < Ba7Nb3.97Zr0.03MoO19.985 < Ba7Nb3.97Sc0.03MoO19.97. Notably, both the H2O/D2O isotope effect and EMF measurements indicate that the proton conduction – if there is any – is negligibly small, and the Sc and Zr-doped Ba7Nb4MoO20 is essentially an oxide ion conductor in the temperature range studied in this work.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.