Microstructure and mechanical properties of FeCrVTa0.1W0.1Ti0.1Cx multi-principal element alloys

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei Guo , Ziheng Cao , Longfeng Li , Mi Zhao , Shusen Wu
{"title":"Microstructure and mechanical properties of FeCrVTa0.1W0.1Ti0.1Cx multi-principal element alloys","authors":"Wei Guo ,&nbsp;Ziheng Cao ,&nbsp;Longfeng Li ,&nbsp;Mi Zhao ,&nbsp;Shusen Wu","doi":"10.1016/j.msea.2025.149152","DOIUrl":null,"url":null,"abstract":"<div><div>The present study investigates the role of carbon content (0–7 at.%) in tailoring the microstructure and mechanical properties of low-activation FeCrVTa<strong><sub>0.1</sub></strong>W<strong><sub>0.1</sub></strong>Ti<strong><sub>0.1</sub></strong>C<sub>x</sub> multi-principal element alloys. Increasing carbon content transforms precipitates from Laves phases to MC-type carbides (M = Ti, Ta, V). At 1 at.% C, grain refinement (∼15.33 μm) and optimized Laves phase distribution yields high strength (1702 MPa of yield stress) and ductility (18.8 % of fracture strain). Higher carbon content (≥3 at.%) promotes intragranular carbide dispersion and grain coarsening (∼44.98 μm), enhancing plasticity (35.8 % of fracture strain at 5 at.% C) but reducing strength. Fracture mode transitions from brittle (cleavage) to ductile-dominated (dimples) with C addition. The present work establishes carbon-mediated phase competition as a key design strategy for structural low activation multi-principal element alloys.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"946 ","pages":"Article 149152"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325013760","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study investigates the role of carbon content (0–7 at.%) in tailoring the microstructure and mechanical properties of low-activation FeCrVTa0.1W0.1Ti0.1Cx multi-principal element alloys. Increasing carbon content transforms precipitates from Laves phases to MC-type carbides (M = Ti, Ta, V). At 1 at.% C, grain refinement (∼15.33 μm) and optimized Laves phase distribution yields high strength (1702 MPa of yield stress) and ductility (18.8 % of fracture strain). Higher carbon content (≥3 at.%) promotes intragranular carbide dispersion and grain coarsening (∼44.98 μm), enhancing plasticity (35.8 % of fracture strain at 5 at.% C) but reducing strength. Fracture mode transitions from brittle (cleavage) to ductile-dominated (dimples) with C addition. The present work establishes carbon-mediated phase competition as a key design strategy for structural low activation multi-principal element alloys.
FeCrVTa0.1W0.1Ti0.1Cx多主元素合金的组织与力学性能
本研究探讨了碳含量(0-7 at)的作用。%),以适应低活化的FeCrVTa0.1W0.1Ti0.1Cx多主元素合金的组织和力学性能。随着碳含量的增加,析出物由Laves相转变为mc型碳化物(M = Ti, Ta, V)。1点。% C、晶粒细化(~ 15.33 μm)和优化的Laves相分布可获得高强度(屈服应力为1702 MPa)和高延展性(断裂应变为18.8%)。含碳量高(≥3 at)。%)促进晶内碳化物弥散和晶粒粗化(~ 44.98 μm),提高塑性(5 at时断裂应变的35.8%)。% C)但降低了强度。随着C的加入,断裂模式从脆性(解理)转变为延性主导(韧窝)。本文建立了碳介导相竞争作为结构低活化多主元素合金的关键设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信