Strength-ductility synergy in an additively manufactured oxide dispersion strengthened Inconel 718 superalloy at 650 °C

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shengbin Dai , Jiangqi Zhu , Shun Wu , Martin Heilmaier , Yuman Zhu , Xingchen Yan , Aijun Huang
{"title":"Strength-ductility synergy in an additively manufactured oxide dispersion strengthened Inconel 718 superalloy at 650 °C","authors":"Shengbin Dai ,&nbsp;Jiangqi Zhu ,&nbsp;Shun Wu ,&nbsp;Martin Heilmaier ,&nbsp;Yuman Zhu ,&nbsp;Xingchen Yan ,&nbsp;Aijun Huang","doi":"10.1016/j.msea.2025.149135","DOIUrl":null,"url":null,"abstract":"<div><div>The retention of dislocation cellular patterns (DCPs) in laser powder bed fusion (LPBF) processed metals offers a novel pathway for achieving strength-ductility balance in high-temperature applications. This study innovatively combines oxide dispersion strengthening (ODS) with tailored heat treatment to stabilize DCPs in Inconel 718 (IN718) superalloys. Through strategic introduction of yttrium oxide (Y<sub>2</sub>O<sub>3</sub>) nanoparticles (average diameter ≈40 nm) and optimized solution treatments (1200 °C for 5min/1 h), we resolve the inherent conflict between residual stress elimination and microstructure preservation in LPBF-fabricated components. The 5-min treated ODS alloy achieves exceptional synergy at 650 °C: yield strength maintains 600 MPa while ductility increases 45 % (from 20 % to 29 %) compared to as-built specimens. Crucially, our approach demonstrates two key innovations: 1) Y<sub>2</sub>O<sub>3</sub> nanoparticles effectively pin dislocations movements, preserving DCPs structure against thermal coarsening; 2) Ultra-short heat treatment duration enables complete Laves phase dissolution without compromising dislocation network integrity. Microstructural analysis confirms that the stabilized DCPs-Y<sub>2</sub>O<sub>3</sub> composite architecture facilitates simultaneous stress and strain accommodation. This work establishes a new paradigm for designing high-performance LPBF alloys through coupled process-microstructure optimization, particularly for aerospace components requiring elevated temperature mechanical stability.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"946 ","pages":"Article 149135"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325013590","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The retention of dislocation cellular patterns (DCPs) in laser powder bed fusion (LPBF) processed metals offers a novel pathway for achieving strength-ductility balance in high-temperature applications. This study innovatively combines oxide dispersion strengthening (ODS) with tailored heat treatment to stabilize DCPs in Inconel 718 (IN718) superalloys. Through strategic introduction of yttrium oxide (Y2O3) nanoparticles (average diameter ≈40 nm) and optimized solution treatments (1200 °C for 5min/1 h), we resolve the inherent conflict between residual stress elimination and microstructure preservation in LPBF-fabricated components. The 5-min treated ODS alloy achieves exceptional synergy at 650 °C: yield strength maintains 600 MPa while ductility increases 45 % (from 20 % to 29 %) compared to as-built specimens. Crucially, our approach demonstrates two key innovations: 1) Y2O3 nanoparticles effectively pin dislocations movements, preserving DCPs structure against thermal coarsening; 2) Ultra-short heat treatment duration enables complete Laves phase dissolution without compromising dislocation network integrity. Microstructural analysis confirms that the stabilized DCPs-Y2O3 composite architecture facilitates simultaneous stress and strain accommodation. This work establishes a new paradigm for designing high-performance LPBF alloys through coupled process-microstructure optimization, particularly for aerospace components requiring elevated temperature mechanical stability.

Abstract Image

650℃下增材制造氧化物弥散强化Inconel 718高温合金的强度-塑性协同效应
激光粉末床熔合(LPBF)加工金属中位错细胞模式(dcp)的保留为在高温应用中实现强度-延性平衡提供了一种新的途径。该研究创新性地将氧化物弥散强化(ODS)与定制热处理相结合,以稳定Inconel 718 (IN718)高温合金中的dcp。通过引入氧化钇(Y2O3)纳米颗粒(平均直径≈40 nm)和优化的固溶处理(1200°C, 5min/1 h),我们解决了lpbf制造组件中残余应力消除和微观结构保存之间的固有冲突。经过5分钟处理的ODS合金在650°C下实现了卓越的协同作用:屈服强度保持在600 MPa,而延展性比成品试样提高了45%(从20%提高到29%)。至关重要的是,我们的方法展示了两个关键的创新:1)Y2O3纳米颗粒有效地固定位错运动,保持dcp结构免受热粗化;2)超短的热处理时间使Laves相完全溶解而不影响位错网络的完整性。显微组织分析证实,稳定的DCPs-Y2O3复合结构有利于同时调节应力和应变。这项工作为通过耦合工艺-微观结构优化设计高性能LPBF合金建立了一个新的范例,特别是对于需要高温机械稳定性的航空航天部件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信