Strategic control of precipitate architecture and ultrafine grain-boundary engineering for enhanced mechanical performance in L12-strengthened FCC-type multi-principal element alloys

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiafeng Wu , Zhenlu Cui , Xiaoliang Han , Ruixin Wang , Zhiwei Chen , Qi Liu , Chaoyu Xie , Jianhong Gong , Chongde Cao , Hui Wang , Rie Y. Umetsu , Kaikai Song , Ran Li
{"title":"Strategic control of precipitate architecture and ultrafine grain-boundary engineering for enhanced mechanical performance in L12-strengthened FCC-type multi-principal element alloys","authors":"Jiafeng Wu ,&nbsp;Zhenlu Cui ,&nbsp;Xiaoliang Han ,&nbsp;Ruixin Wang ,&nbsp;Zhiwei Chen ,&nbsp;Qi Liu ,&nbsp;Chaoyu Xie ,&nbsp;Jianhong Gong ,&nbsp;Chongde Cao ,&nbsp;Hui Wang ,&nbsp;Rie Y. Umetsu ,&nbsp;Kaikai Song ,&nbsp;Ran Li","doi":"10.1016/j.msea.2025.149161","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-principal element alloys (MPEAs) offer exceptional mechanical properties for structural applications, yet their microstructural complexity poses challenges in optimizing performance. This study investigates the impact of initial microstructures—homogenized equiaxed grains (EG) with dot-like L1<sub>2</sub> nanoprecipitates versus as-cast columnar grains (CG) with rod-like L1<sub>2</sub> nanoprecipitates—on the mechanical behavior of Ni<sub>40</sub>Co<sub>35</sub>Cr<sub>15</sub>Al<sub>5</sub>Ti<sub>5</sub> MPEAs under identical thermomechanical processing. The processed EG samples develop a bimodal grain structure, comprising ultrafine recrystallized and coarse unrecrystallized grains. Detailed analysis reveals that coherent L1<sub>2</sub> nanoprecipitates predominantly form within unrecrystallized regions, while recrystallized grains contain both continuous and discontinuous L1<sub>2</sub> nanoprecipitates, alongside submicron semi-coherent L1<sub>2</sub> particles at grain boundaries (GBs). Particularly, Lamellar L1<sub>2</sub> precipitates in the recrystallized-unrecrystallized transition zone initiate microcracks, compromising strength-ductility synergy. Conversely, the processed CG samples exhibit a uniform ultrafine-grained matrix with comparable L1<sub>2</sub> precipitation but spatially modulated distributions, enhancing plastic deformation through stacking faults, Lomer-Cottrell locks, and distorted 9R structures near annealing twins. Submicron L1<sub>2</sub> particles at GBs impede crack propagation, resulting in superior mechanical properties: an ultimate tensile strength of ∼1833 MPa and a total elongation of ∼14.8 %. This study reveals the strategic control of initial microstructures and thermomechanical processing to optimize grain refinement and L1<sub>2</sub> phase precipitation, advancing the development of high-performance structural materials.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"946 ","pages":"Article 149161"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325013851","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-principal element alloys (MPEAs) offer exceptional mechanical properties for structural applications, yet their microstructural complexity poses challenges in optimizing performance. This study investigates the impact of initial microstructures—homogenized equiaxed grains (EG) with dot-like L12 nanoprecipitates versus as-cast columnar grains (CG) with rod-like L12 nanoprecipitates—on the mechanical behavior of Ni40Co35Cr15Al5Ti5 MPEAs under identical thermomechanical processing. The processed EG samples develop a bimodal grain structure, comprising ultrafine recrystallized and coarse unrecrystallized grains. Detailed analysis reveals that coherent L12 nanoprecipitates predominantly form within unrecrystallized regions, while recrystallized grains contain both continuous and discontinuous L12 nanoprecipitates, alongside submicron semi-coherent L12 particles at grain boundaries (GBs). Particularly, Lamellar L12 precipitates in the recrystallized-unrecrystallized transition zone initiate microcracks, compromising strength-ductility synergy. Conversely, the processed CG samples exhibit a uniform ultrafine-grained matrix with comparable L12 precipitation but spatially modulated distributions, enhancing plastic deformation through stacking faults, Lomer-Cottrell locks, and distorted 9R structures near annealing twins. Submicron L12 particles at GBs impede crack propagation, resulting in superior mechanical properties: an ultimate tensile strength of ∼1833 MPa and a total elongation of ∼14.8 %. This study reveals the strategic control of initial microstructures and thermomechanical processing to optimize grain refinement and L12 phase precipitation, advancing the development of high-performance structural materials.
l12增强fcc型多主元素合金力学性能的析出相组织策略控制和超细晶界工程
多主元素合金(mpea)在结构应用中具有优异的力学性能,但其微观结构的复杂性给优化性能带来了挑战。本研究研究了初始微观结构——具有点状L12纳米沉淀的均匀等轴晶(EG)与具有棒状L12纳米沉淀的铸态柱状晶(CG)——在相同的热处理条件下对Ni40Co35Cr15Al5Ti5 mpea力学行为的影响。处理后的EG样品呈现出由超细再结晶和粗未再结晶晶粒组成的双峰型晶粒结构。详细分析表明,非再结晶区域主要形成相干L12纳米沉淀,而再结晶颗粒中既有连续的L12纳米沉淀,也有不连续的L12纳米沉淀,并在晶界处存在亚微米半相干L12颗粒。特别是,在再结晶-非再结晶过渡区,层状L12析出引发微裂纹,影响强度-延性协同作用。相反,经过处理的CG样品呈现出均匀的超细晶基体,具有相似的L12析出,但分布空间调制,通过层错、lmer - cottrell锁和退火孪晶附近扭曲的9R结构增强了塑性变形。GBs中的亚微米L12颗粒阻碍了裂纹扩展,从而产生了优异的机械性能:极限抗拉强度为~ 1833 MPa,总伸长率为~ 14.8%。本研究揭示了对初始组织和热机械加工的策略控制,以优化晶粒细化和L12相的析出,推动高性能结构材料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信