End-to-end subpixel positioning method for space dim and weak point targets based on multi-task learning

IF 2.5 3区 物理与天体物理 Q2 OPTICS
Ruixue Ma , Guopeng Ding , Shihao Han , Zhaoxiong Li , Zhiyu Bi , Zhencai Zhu , Haodong Yan
{"title":"End-to-end subpixel positioning method for space dim and weak point targets based on multi-task learning","authors":"Ruixue Ma ,&nbsp;Guopeng Ding ,&nbsp;Shihao Han ,&nbsp;Zhaoxiong Li ,&nbsp;Zhiyu Bi ,&nbsp;Zhencai Zhu ,&nbsp;Haodong Yan","doi":"10.1016/j.optcom.2025.132370","DOIUrl":null,"url":null,"abstract":"<div><div>Subpixel positioning of dim targets is critical for space optical navigation. To overcome the limited adaptability of threshold-based methods and error accumulation in staged deep learning approaches, we propose an end-to-end multi-task network. The model integrates Squeeze-and-Excitation (SE) and Hybrid Attention (HA) modules into a U-Net backbone, jointly generating a pixel-wise mask and a distribution map for centroid positioning. Subpixel coordinates are directly calculated from these outputs, eliminating error propagation between detection and positioning stages. On simulated data, our method achieves a 30% higher detection rate and 0.5 pixels lower RMSE compared to adaptive thresholding, and outperforms segmentation-only StarNet by 8.8% in positioning accuracy. Real-data experiments demonstrate a detection rate of 90.83% and an RMSE of 0.2826 pixels, confirming high robustness and subpixel precision.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"596 ","pages":"Article 132370"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825008983","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Subpixel positioning of dim targets is critical for space optical navigation. To overcome the limited adaptability of threshold-based methods and error accumulation in staged deep learning approaches, we propose an end-to-end multi-task network. The model integrates Squeeze-and-Excitation (SE) and Hybrid Attention (HA) modules into a U-Net backbone, jointly generating a pixel-wise mask and a distribution map for centroid positioning. Subpixel coordinates are directly calculated from these outputs, eliminating error propagation between detection and positioning stages. On simulated data, our method achieves a 30% higher detection rate and 0.5 pixels lower RMSE compared to adaptive thresholding, and outperforms segmentation-only StarNet by 8.8% in positioning accuracy. Real-data experiments demonstrate a detection rate of 90.83% and an RMSE of 0.2826 pixels, confirming high robustness and subpixel precision.
基于多任务学习的空间弱小目标端到端亚像素定位方法
微光目标的亚像素定位是空间光学导航的关键。为了克服基于阈值的方法的有限适应性和阶段深度学习方法中的错误积累,我们提出了一个端到端多任务网络。该模型将压缩激励(SE)和混合注意(HA)模块集成到U-Net骨干网中,共同生成逐像素的掩模和用于质心定位的分布图。从这些输出直接计算亚像素坐标,消除了检测和定位阶段之间的误差传播。在模拟数据上,与自适应阈值相比,我们的方法的检测率提高了30%,RMSE降低了0.5个像素,定位精度比仅分割的StarNet高8.8%。实际数据实验表明,该方法的检测率为90.83%,RMSE为0.2826像素,具有较高的鲁棒性和亚像素精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信