Microscopic origins of conformable dynamics: From disorder to deformation

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
José Weberszpil
{"title":"Microscopic origins of conformable dynamics: From disorder to deformation","authors":"José Weberszpil","doi":"10.1016/j.physa.2025.130945","DOIUrl":null,"url":null,"abstract":"<div><div>Conformable derivatives provide a mathematically tractable approach to modeling anomalous relaxation and scaling in complex systems, yet their physical origin remains poorly understood. We address this gap by deriving conformable relaxation dynamics from first principles. Our approach is based on a spatially-resolved Ginzburg–Landau model incorporating quenched disorder and temperature-dependent kinetic coefficients. Applying statistical averaging and transport-theoretic arguments, we demonstrate that spatial heterogeneity and energy barrier distributions generate power-law memory kernels of the form <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mo>∼</mo><msup><mrow><mi>τ</mi></mrow><mrow><mi>μ</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>. In the adiabatic limit, these memory effects reduce to a local conformable evolution law <span><math><mrow><msup><mrow><mi>T</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>μ</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>ψ</mi><mo>/</mo><mi>d</mi><mi>T</mi></mrow></math></span>. We show that the deformation parameter <span><math><mi>μ</mi></math></span> is directly linked to measurable quantities such as transport coefficients, susceptibility, energy barrier distributions, and the underlying disorder exponent. Furthermore, <span><math><mi>μ</mi></math></span> is related to Tsallis nonextensive entropy via the relation <span><math><mrow><mi>μ</mi><mo>=</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. These results establish a microscopic foundation for conformable dynamics in disordered media, provide a physical interpretation of the deformation parameter, ensure thermodynamic consistency with entropy production, and yield experimentally testable predictions. Observable consequences include specific relaxation spectra and susceptibility decay patterns. Overall, the framework unifies memory effects, nonextensive thermodynamics, and critical phenomena within a coherent and physically grounded description.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"678 ","pages":"Article 130945"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125005977","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conformable derivatives provide a mathematically tractable approach to modeling anomalous relaxation and scaling in complex systems, yet their physical origin remains poorly understood. We address this gap by deriving conformable relaxation dynamics from first principles. Our approach is based on a spatially-resolved Ginzburg–Landau model incorporating quenched disorder and temperature-dependent kinetic coefficients. Applying statistical averaging and transport-theoretic arguments, we demonstrate that spatial heterogeneity and energy barrier distributions generate power-law memory kernels of the form K(τ)τμ1. In the adiabatic limit, these memory effects reduce to a local conformable evolution law T1μdψ/dT. We show that the deformation parameter μ is directly linked to measurable quantities such as transport coefficients, susceptibility, energy barrier distributions, and the underlying disorder exponent. Furthermore, μ is related to Tsallis nonextensive entropy via the relation μ=1/(q1). These results establish a microscopic foundation for conformable dynamics in disordered media, provide a physical interpretation of the deformation parameter, ensure thermodynamic consistency with entropy production, and yield experimentally testable predictions. Observable consequences include specific relaxation spectra and susceptibility decay patterns. Overall, the framework unifies memory effects, nonextensive thermodynamics, and critical phenomena within a coherent and physically grounded description.
整合动力学的微观起源:从无序到变形
合形导数为复杂系统中的异常松弛和尺度建模提供了一种数学上易于处理的方法,但它们的物理起源仍然知之甚少。我们通过从第一原理推导出符合松弛动力学来解决这一差距。我们的方法是基于一个空间分辨的金兹堡-朗道模型,结合了淬火无序和温度相关的动力学系数。应用统计平均和输运理论论证,我们证明了空间异质性和能量势垒分布产生形式为K(τ) ~ τμ−1的幂律记忆核。在绝热极限下,这些记忆效应减小到一个局部符合的演化定律T1−μdψ/dT。我们发现变形参数μ与传输系数、磁化率、能垒分布和潜在的无序指数等可测量量直接相关。此外,μ通过关系μ=1/(q−1)与Tsallis非扩展熵相关。这些结果为无序介质中的一致性动力学建立了微观基础,提供了变形参数的物理解释,确保了热力学与熵产的一致性,并得出了实验可验证的预测。可观察到的结果包括特定的弛豫谱和磁化率衰减模式。总的来说,该框架将记忆效应、非扩展热力学和关键现象统一在一个连贯的、物理基础的描述中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信