{"title":"Design, modelling and experimental validation of a composite suspension system for solar EVs","authors":"Ana Pavlovic, Giangiacomo Minak","doi":"10.1016/j.compstruct.2025.119650","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the design, finite element modeling, and experimental validation of a novel rear suspension system for lightweight, solar-powered electric vehicles. The proposed system features stiffness-tunable components made entirely from carbon fiber-reinforced polymers (CFRPs), including a torsion bar and flexural springs engineered to maximize the strength-to-weight ratio while ensuring fail-safe operation. This work represents one of the first fully integrated efforts to design, simulate, and validate a complete CFRP-based suspension system tailored for solar vehicle applications, with specific attention to redundancy and reliability. A multilayer layup strategy is adopted to customize the mechanical response under vertical, lateral, and torsional loading. Finite Element (FE) analyses using layered shell elements are conducted to assess stress distributions and identify potential failure zones, employing the Tsai–Wu failure criterion. Experimental testing confirms the accuracy of the numerical predictions, with stiffness deviations below 10% under representative loading conditions. The results demonstrate the feasibility of using anisotropic CFRP laminates to achieve compact, efficient, and reliable suspension systems with stiffness-tuning capabilities. The proposed approach offers a validated design methodology suitable for long-distance solar vehicle competitions, where weight, safety, and operability under partial damage are critical.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"373 ","pages":"Article 119650"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325008153","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the design, finite element modeling, and experimental validation of a novel rear suspension system for lightweight, solar-powered electric vehicles. The proposed system features stiffness-tunable components made entirely from carbon fiber-reinforced polymers (CFRPs), including a torsion bar and flexural springs engineered to maximize the strength-to-weight ratio while ensuring fail-safe operation. This work represents one of the first fully integrated efforts to design, simulate, and validate a complete CFRP-based suspension system tailored for solar vehicle applications, with specific attention to redundancy and reliability. A multilayer layup strategy is adopted to customize the mechanical response under vertical, lateral, and torsional loading. Finite Element (FE) analyses using layered shell elements are conducted to assess stress distributions and identify potential failure zones, employing the Tsai–Wu failure criterion. Experimental testing confirms the accuracy of the numerical predictions, with stiffness deviations below 10% under representative loading conditions. The results demonstrate the feasibility of using anisotropic CFRP laminates to achieve compact, efficient, and reliable suspension systems with stiffness-tuning capabilities. The proposed approach offers a validated design methodology suitable for long-distance solar vehicle competitions, where weight, safety, and operability under partial damage are critical.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.