Mengdie Liang , Xin Wang , Xinyan Yuan , João R. Correia , Zhishen Wu
{"title":"Behaviors and load distribution of sleeved bolted joints between pultruded FRP box profiles with multi-directional fiber layups","authors":"Mengdie Liang , Xin Wang , Xinyan Yuan , João R. Correia , Zhishen Wu","doi":"10.1016/j.compstruct.2025.119673","DOIUrl":null,"url":null,"abstract":"<div><div>Pultruded fiber-reinforced polymer (PFRP) composites have recently garnered significant attention for truss structures. However, the low connection efficiency and inherent brittleness of traditional PFRP profiles, with mostly unidirectional (UD) reinforcement, pose critical challenges that limit their structural applications. This study presents experimental and numerical investigations about the tensile performance of bolted sleeved joints between PFRP box profiles with multi-directional (MD) fiber layups, aiming to explore effective strategies for enhancing joint connection efficiency. The studied parameters included bolt layout, fiber layup, end distance and bolt spacing. Results indicate that the incorporation of MD fiber layups can improve the joint strength of the bolted sleeved joints by 90 %. Moreover, arranging the bolts to pass through all four walls of the box profile mitigated the uneven load distribution among bolts, thereby improving connection efficiency without requiring additional bolts or increased connection length compared to joints where bolts were arranged passing only through two walls. Increasing bolt spacing proved more effective in enhancing ultimate load than adjusting end distance. For engineering applications, it is recommended that bolt spacing exceeds five times the bolt diameter in order to guarantee pin-bearing failure.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"373 ","pages":"Article 119673"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325008384","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Pultruded fiber-reinforced polymer (PFRP) composites have recently garnered significant attention for truss structures. However, the low connection efficiency and inherent brittleness of traditional PFRP profiles, with mostly unidirectional (UD) reinforcement, pose critical challenges that limit their structural applications. This study presents experimental and numerical investigations about the tensile performance of bolted sleeved joints between PFRP box profiles with multi-directional (MD) fiber layups, aiming to explore effective strategies for enhancing joint connection efficiency. The studied parameters included bolt layout, fiber layup, end distance and bolt spacing. Results indicate that the incorporation of MD fiber layups can improve the joint strength of the bolted sleeved joints by 90 %. Moreover, arranging the bolts to pass through all four walls of the box profile mitigated the uneven load distribution among bolts, thereby improving connection efficiency without requiring additional bolts or increased connection length compared to joints where bolts were arranged passing only through two walls. Increasing bolt spacing proved more effective in enhancing ultimate load than adjusting end distance. For engineering applications, it is recommended that bolt spacing exceeds five times the bolt diameter in order to guarantee pin-bearing failure.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.