DMGTNet: A graph-temporal deep learning model for membrane fouling prediction in dual-membrane wastewater treatment systems

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Hao Zhang , Liangsheng Shi , Jun Cai , Xiaoyu Wang , Zheng Yan
{"title":"DMGTNet: A graph-temporal deep learning model for membrane fouling prediction in dual-membrane wastewater treatment systems","authors":"Hao Zhang ,&nbsp;Liangsheng Shi ,&nbsp;Jun Cai ,&nbsp;Xiaoyu Wang ,&nbsp;Zheng Yan","doi":"10.1016/j.memsci.2025.124648","DOIUrl":null,"url":null,"abstract":"<div><div>Membrane fouling-induced permeate flux decline remains a major limitation to the widespread deployment of membrane separation technologies. To better capture the structural dependencies and time-varying patterns among membrane modules in dual-membrane systems, we propose the Dual Membrane Graph-Temporal Network (DMGTNet). This model utilizes the Graph Attention Network (GAT) to dynamically learn nonlinear spatial dependencies among membrane components, while the gated structure of the Long Short-Term Memory Networks (LSTM) module is employed to capture the long-term evolution of membrane fouling behaviors. Additionally, a dual-stage progressive training strategy is devised to improve both the accuracy and the balance of multivariate prediction performance. The proposed model is validated on data from four full-scale dual-membrane water treatment facilities collected over 50 months, involving 240 sensor nodes and 6.8 billion high-frequency sensor readings. DMGTNet achieves average R<sup>2</sup> values of 0.925, 0.897, and 0.846 for 5-step, 10-step, and 15-step predictions of transmembrane pressure difference (TMP) and permeate flux (PF), respectively, with corresponding MAPE values of 6.981 %, 10.443 %, and 17.082 %. This performance surpasses existing baseline models, yielding average R<sup>2</sup> improvements of 0.032, 0.035, and 0.040, and MAPE reductions of 5.600 %, 8.321 %, and 9.635 %. The model demonstrates excellent interpretability, as its attention mechanism autonomously identifies key regulatory parameters for inter-process coupling, thereby offering a theoretical foundation for the intelligent optimization of complex membrane treatment processes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"736 ","pages":"Article 124648"},"PeriodicalIF":9.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825009615","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane fouling-induced permeate flux decline remains a major limitation to the widespread deployment of membrane separation technologies. To better capture the structural dependencies and time-varying patterns among membrane modules in dual-membrane systems, we propose the Dual Membrane Graph-Temporal Network (DMGTNet). This model utilizes the Graph Attention Network (GAT) to dynamically learn nonlinear spatial dependencies among membrane components, while the gated structure of the Long Short-Term Memory Networks (LSTM) module is employed to capture the long-term evolution of membrane fouling behaviors. Additionally, a dual-stage progressive training strategy is devised to improve both the accuracy and the balance of multivariate prediction performance. The proposed model is validated on data from four full-scale dual-membrane water treatment facilities collected over 50 months, involving 240 sensor nodes and 6.8 billion high-frequency sensor readings. DMGTNet achieves average R2 values of 0.925, 0.897, and 0.846 for 5-step, 10-step, and 15-step predictions of transmembrane pressure difference (TMP) and permeate flux (PF), respectively, with corresponding MAPE values of 6.981 %, 10.443 %, and 17.082 %. This performance surpasses existing baseline models, yielding average R2 improvements of 0.032, 0.035, and 0.040, and MAPE reductions of 5.600 %, 8.321 %, and 9.635 %. The model demonstrates excellent interpretability, as its attention mechanism autonomously identifies key regulatory parameters for inter-process coupling, thereby offering a theoretical foundation for the intelligent optimization of complex membrane treatment processes.

Abstract Image

双膜污水处理系统中膜污染预测的图-时间深度学习模型
膜污染引起的渗透通量下降仍然是制约膜分离技术广泛应用的主要因素。为了更好地捕捉双膜系统中膜模块之间的结构依赖关系和时变模式,我们提出了双膜图-时间网络(DMGTNet)。该模型利用图注意网络(GAT)动态学习膜组分之间的非线性空间依赖关系,利用长短期记忆网络(LSTM)模块的门控结构捕捉膜污染行为的长期演变。此外,设计了一种双阶段渐进式训练策略,以提高多元预测性能的准确性和平衡性。该模型在四个全尺寸双膜水处理设施的数据上进行了验证,这些数据收集了超过50个月,涉及240个传感器节点和68亿个高频传感器读数。DMGTNet对跨膜压差(TMP)、渗透通量(PF)的5步、10步和15步预测的平均R2分别为0.925、0.897和0.846,对应的MAPE值分别为6.981%、10.443 %和17.082%。该性能超过了现有的基线模型,平均R2提高了0.032、0.035和0.040,MAPE降低了5.600%、8.321%和9.635%。该模型具有良好的可解释性,其注意机制能够自主识别过程间耦合的关键调控参数,从而为复杂膜处理过程的智能优化提供理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信