{"title":"On failure mechanisms and load-parallel cracking in confined elastomeric layers","authors":"Aarosh Dahal, Aditya Kumar","doi":"10.1016/j.eml.2025.102406","DOIUrl":null,"url":null,"abstract":"<div><div>Thin layers of elastomers bonded to two rigid plates demonstrate unusual failure response. Historically, it has been believed that strongly-bonded layers fail by two distinct mechanisms: (i) internal/external penny-shaped crack nucleation and propagation, and (ii) cavitation, that is, cavity growth leading to fibrillation and then failure. However, recent work has demonstrated that cavitation itself is predominantly a fracture process. While the equations describing cavitation from a macroscopic or top-down view are now known and validated with experiments, several aspects of the cavitation crack growth need to be better understood. Notably, cavitation often involves through-thickness crack growth parallel to the loading direction, raising questions about when it initiates instead of the more typical penny-shaped cracks perpendicular to the load. Understanding and controlling the two vertical and horizontal crack growth is key to developing tougher soft films and adhesives. The purpose of this Letter is to provide an explanation for the load-parallel crack growth through a comprehensive numerical analysis and highlight the role of various material and geometrical parameters.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"80 ","pages":"Article 102406"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235243162500118X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thin layers of elastomers bonded to two rigid plates demonstrate unusual failure response. Historically, it has been believed that strongly-bonded layers fail by two distinct mechanisms: (i) internal/external penny-shaped crack nucleation and propagation, and (ii) cavitation, that is, cavity growth leading to fibrillation and then failure. However, recent work has demonstrated that cavitation itself is predominantly a fracture process. While the equations describing cavitation from a macroscopic or top-down view are now known and validated with experiments, several aspects of the cavitation crack growth need to be better understood. Notably, cavitation often involves through-thickness crack growth parallel to the loading direction, raising questions about when it initiates instead of the more typical penny-shaped cracks perpendicular to the load. Understanding and controlling the two vertical and horizontal crack growth is key to developing tougher soft films and adhesives. The purpose of this Letter is to provide an explanation for the load-parallel crack growth through a comprehensive numerical analysis and highlight the role of various material and geometrical parameters.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.