Percolation on sites visited by continuous random walks in a simple cubic lattice

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Hoseung Jang, Unjong Yu
{"title":"Percolation on sites visited by continuous random walks in a simple cubic lattice","authors":"Hoseung Jang,&nbsp;Unjong Yu","doi":"10.1016/j.physa.2025.130975","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the percolation on sites visited by random walks with fixed step lengths in a simple cubic lattice, where the random walker moves in continuous space. Using the Newman–Ziff algorithm combined with finite-size scaling analysis, we calculate the percolation threshold and critical exponents <span><math><mi>ν</mi></math></span>, <span><math><mi>β</mi></math></span>, and <span><math><mi>γ</mi></math></span> for various step lengths. Our results reveal that the values of these exponents depend on the step length <span><math><mi>l</mi></math></span>. Specifically, for <span><math><mrow><mn>2</mn><mo>≤</mo><mi>l</mi><mo>≤</mo><mn>3</mn></mrow></math></span>, the critical exponents align with those of the percolation models based on discrete random walks in three dimensions, and gradually transform to the values of the ordinary three-dimensional site percolation as <span><math><mi>l</mi></math></span> increases. We analyze that these changes occur because the correlation function varies with the step length <span><math><mi>l</mi></math></span>. Moreover, we confirm that the hyperscaling relation <span><math><mrow><mi>ν</mi><mi>d</mi><mo>=</mo><mn>2</mn><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></math></span> is valid, despite the variation in the critical exponents.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"678 ","pages":"Article 130975"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125006272","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the percolation on sites visited by random walks with fixed step lengths in a simple cubic lattice, where the random walker moves in continuous space. Using the Newman–Ziff algorithm combined with finite-size scaling analysis, we calculate the percolation threshold and critical exponents ν, β, and γ for various step lengths. Our results reveal that the values of these exponents depend on the step length l. Specifically, for 2l3, the critical exponents align with those of the percolation models based on discrete random walks in three dimensions, and gradually transform to the values of the ordinary three-dimensional site percolation as l increases. We analyze that these changes occur because the correlation function varies with the step length l. Moreover, we confirm that the hyperscaling relation νd=2β+γ is valid, despite the variation in the critical exponents.
在简单立方晶格中连续随机漫步所访问的地点上的渗透
在一个简单的立方晶格中,随机步行者在连续空间中移动,我们研究了固定步长随机行走所访问的地点上的渗透。利用Newman-Ziff算法结合有限尺度分析,我们计算了不同步长下的渗流阈值和临界指数ν、β和γ。结果表明,这些指数的取值与步长l有关,其中,当2≤l≤3时,临界指数与基于离散随机游动的三维渗流模型的临界指数一致,随着l的增加,临界指数逐渐转化为普通三维渗流点的临界指数。我们分析了这些变化的发生是因为相关函数随步长l而变化。此外,我们证实了超尺度关系νd=2β+γ是有效的,尽管临界指数发生了变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信