Matteo Francia , Stefano Rizzi , Matteo Golfarelli , Patrick Marcel
{"title":"Predicting multidimensional cubes through intentional analytics","authors":"Matteo Francia , Stefano Rizzi , Matteo Golfarelli , Patrick Marcel","doi":"10.1016/j.is.2025.102628","DOIUrl":null,"url":null,"abstract":"<div><div>In an attempt to streamline exploratory data analysis of multidimensional cubes, the Intentional Analytics Model ha been proposed as a way to unite OLAP and analytics by allowing users to indicate their analysis intentions and returning cubes enhanced with models. Five intention operators were envisioned to this end; in this work we focus on the <span>predict</span> operator, whose goal is to estimate the missing values of a cube measure starting from known values of the same measure or other measures using different regression models. Although prediction tasks such as forecasting and imputation are routinary for analysts, the added value of our approach is (i) to encapsulate them in a declarative, concise, natural language-like syntax; (ii) to automate the selection of the best measures to be used and the computation of the models, and (iii) to automate the evaluation of the interest of the models computed. First we propose a syntax and a semantics for <span>predict</span> and discuss how enhanced cubes are built by (i) predicting the missing values for a measure based on the available information via one or more models and (ii) highlighting the most interesting prediction. Then we test the operator implementation, proving that its performance is in line with the interactivity requirement of OLAP session and that accurate predictions can be returned.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"136 ","pages":"Article 102628"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437925001140","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In an attempt to streamline exploratory data analysis of multidimensional cubes, the Intentional Analytics Model ha been proposed as a way to unite OLAP and analytics by allowing users to indicate their analysis intentions and returning cubes enhanced with models. Five intention operators were envisioned to this end; in this work we focus on the predict operator, whose goal is to estimate the missing values of a cube measure starting from known values of the same measure or other measures using different regression models. Although prediction tasks such as forecasting and imputation are routinary for analysts, the added value of our approach is (i) to encapsulate them in a declarative, concise, natural language-like syntax; (ii) to automate the selection of the best measures to be used and the computation of the models, and (iii) to automate the evaluation of the interest of the models computed. First we propose a syntax and a semantics for predict and discuss how enhanced cubes are built by (i) predicting the missing values for a measure based on the available information via one or more models and (ii) highlighting the most interesting prediction. Then we test the operator implementation, proving that its performance is in line with the interactivity requirement of OLAP session and that accurate predictions can be returned.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.