GPT-5 and open-weight large language models: Advances in reasoning, transparency, and control

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Maikel Leon
{"title":"GPT-5 and open-weight large language models: Advances in reasoning, transparency, and control","authors":"Maikel Leon","doi":"10.1016/j.is.2025.102620","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid evolution of Generative Pre-trained Transformers (GPTs) has revolutionized natural language processing, enabling models to generate coherent text, solve mathematical problems, write code, and even reason about complex tasks. This paper presents a scientific review of GPT-5, OpenAI’s latest flagship model, and examines its innovations in comparison to previous generations of GPT. We summarize the model’s architecture and features, including hierarchical routing, expanded context windows, and enhanced tool-use capabilities, and survey empirical evidence of improved performance on academic benchmarks. A dedicated section discusses the release of open-weight mixture-of-experts models (GPT-OSS), describing their technical design, licensing, and comparative performance. Our analysis synthesizes findings from recent literature on long-context evaluation, cognitive biases, medical summarization, and hallucination vulnerability, highlighting where GPT-5 advances the state of the art and where challenges remain. We conclude by discussing the implications of open-weight models for transparency and reproducibility and propose directions for future research on evaluation, safety, and agentic behavior.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"136 ","pages":"Article 102620"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437925001061","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid evolution of Generative Pre-trained Transformers (GPTs) has revolutionized natural language processing, enabling models to generate coherent text, solve mathematical problems, write code, and even reason about complex tasks. This paper presents a scientific review of GPT-5, OpenAI’s latest flagship model, and examines its innovations in comparison to previous generations of GPT. We summarize the model’s architecture and features, including hierarchical routing, expanded context windows, and enhanced tool-use capabilities, and survey empirical evidence of improved performance on academic benchmarks. A dedicated section discusses the release of open-weight mixture-of-experts models (GPT-OSS), describing their technical design, licensing, and comparative performance. Our analysis synthesizes findings from recent literature on long-context evaluation, cognitive biases, medical summarization, and hallucination vulnerability, highlighting where GPT-5 advances the state of the art and where challenges remain. We conclude by discussing the implications of open-weight models for transparency and reproducibility and propose directions for future research on evaluation, safety, and agentic behavior.
GPT-5和开放权重大型语言模型:推理、透明度和控制方面的进展
生成预训练变形器(gpt)的快速发展彻底改变了自然语言处理,使模型能够生成连贯的文本,解决数学问题,编写代码,甚至对复杂任务进行推理。本文对OpenAI最新旗舰模型GPT-5进行了科学回顾,并将其与前几代GPT进行了比较。我们总结了模型的架构和特征,包括分层路由、扩展的上下文窗口和增强的工具使用能力,并调查了在学术基准上改进性能的经验证据。专门的一节讨论了开放式专家混合模型(GPT-OSS)的发布,描述了它们的技术设计、许可和比较性能。我们的分析综合了近期文献中关于长期情境评估、认知偏差、医学总结和幻觉脆弱性的发现,突出了GPT-5在哪些方面取得了进展,哪些方面仍存在挑战。最后,我们讨论了开重模型对透明度和可重复性的影响,并提出了评估、安全性和代理行为的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Systems
Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
2.70%
发文量
112
审稿时长
53 days
期刊介绍: Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems. Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信