Jinwoo Kim , Jae Gwang Kwon , Hyeon Sang Bark , Jin Ho Chang , Haemin Kim
{"title":"Streamlining the cell flow: Feasibility of acoustically driven cell alignment for in vivo flow cytometry","authors":"Jinwoo Kim , Jae Gwang Kwon , Hyeon Sang Bark , Jin Ho Chang , Haemin Kim","doi":"10.1016/j.sna.2025.117066","DOIUrl":null,"url":null,"abstract":"<div><div>In vivo flow cytometry (IVFC) utilizes blood vessels as natural conduits for real-time and noninvasive monitoring of circulating cells. However, conventional IVFC systems are primarily limited to superficial vessels, restricting analytical throughput and diagnostic sensitivity. Here, we propose a novel acoustic-based cell alignment strategy that allows IVFC to be applied in a broader range of vascular locations. We developed a dual ultrasound transducer (DUST) system in which two transducers are positioned face-to-face at the same angle. This configuration generates an interference-based acoustic field containing periodically arranged pressure nodes and antinodes within the vessel. The resulting field aligns flowing cells into multiple parallel streamlines, concentrating their movement within a confined region and enhancing the consistency and efficiency of signal detection. Blood vessel mimicking phantom experiments demonstrated that a dual ultrasound (DUS) enables stable multiple parallel streamlines of microbeads in a vessel while maintaining uniform flow velocity. Furthermore, fluorescent beads modeling rare cells exhibited approximately a 9-fold increase in signal-to-noise ratio (SNR) under DUS application compared to the non-aligned condition. Signal intensity fluctuations at the detection point were also significantly reduced, enabling more stable and reliable signal analysis. This approach demonstrates strong potential for highly sensitive, single-cell-level diagnostics in vivo. It also enables seamless integration with photoacoustic or fluorescence-based detection systems for future multimodal single-cell analysis.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"395 ","pages":"Article 117066"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725008726","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In vivo flow cytometry (IVFC) utilizes blood vessels as natural conduits for real-time and noninvasive monitoring of circulating cells. However, conventional IVFC systems are primarily limited to superficial vessels, restricting analytical throughput and diagnostic sensitivity. Here, we propose a novel acoustic-based cell alignment strategy that allows IVFC to be applied in a broader range of vascular locations. We developed a dual ultrasound transducer (DUST) system in which two transducers are positioned face-to-face at the same angle. This configuration generates an interference-based acoustic field containing periodically arranged pressure nodes and antinodes within the vessel. The resulting field aligns flowing cells into multiple parallel streamlines, concentrating their movement within a confined region and enhancing the consistency and efficiency of signal detection. Blood vessel mimicking phantom experiments demonstrated that a dual ultrasound (DUS) enables stable multiple parallel streamlines of microbeads in a vessel while maintaining uniform flow velocity. Furthermore, fluorescent beads modeling rare cells exhibited approximately a 9-fold increase in signal-to-noise ratio (SNR) under DUS application compared to the non-aligned condition. Signal intensity fluctuations at the detection point were also significantly reduced, enabling more stable and reliable signal analysis. This approach demonstrates strong potential for highly sensitive, single-cell-level diagnostics in vivo. It also enables seamless integration with photoacoustic or fluorescence-based detection systems for future multimodal single-cell analysis.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...