Maneuvering edge passivation of armchair BeN4 nanoribbons for efficient nanoscale interconnects

IF 4.6 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
L. Ponvijayakanthan , Neeraj K. Jaiswal , Haranath Ghosh
{"title":"Maneuvering edge passivation of armchair BeN4 nanoribbons for efficient nanoscale interconnects","authors":"L. Ponvijayakanthan ,&nbsp;Neeraj K. Jaiswal ,&nbsp;Haranath Ghosh","doi":"10.1016/j.mseb.2025.118789","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the influence of edge passivations of armchair BeN<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> nanoribbons with F, O, and -OH using density functional theory based calculations. Our results show that Be-edges of nanoribbons can be passivated with the investigated functional elements/groups, while N-edges remain chemically inert. Electronic structure analysis revealed that F- and OH-passivation eliminated Be atom edge states, shifting from edge-states to bulk-states dominated conduction. Quantum transport calculations indicate that Be-edge modes contribute significantly to current conduction, with passivation reducing electron current. Additionally, most of the considered nanoribbon configurations exhibit approximately linear current–voltage (I–V) characteristics. Analysis of the equivalent RLC circuit for interconnects shows that F-passivated mixed-edge nanoribbons can serve as high-speed interconnects in nanoscale devices due to minimal intrinsic propagation delay (<span><math><mo>∼</mo></math></span> 4 to <span><math><mrow><mn>6</mn><mspace></mspace><mi>μ</mi><mi>s</mi></mrow></math></span>). Thus, our findings provide valuable insights for experimental efforts aimed at developing functional devices based on nitrogen-rich armchair BeN<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> nanoribbons.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"323 ","pages":"Article 118789"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092151072500813X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the influence of edge passivations of armchair BeN4 nanoribbons with F, O, and -OH using density functional theory based calculations. Our results show that Be-edges of nanoribbons can be passivated with the investigated functional elements/groups, while N-edges remain chemically inert. Electronic structure analysis revealed that F- and OH-passivation eliminated Be atom edge states, shifting from edge-states to bulk-states dominated conduction. Quantum transport calculations indicate that Be-edge modes contribute significantly to current conduction, with passivation reducing electron current. Additionally, most of the considered nanoribbon configurations exhibit approximately linear current–voltage (I–V) characteristics. Analysis of the equivalent RLC circuit for interconnects shows that F-passivated mixed-edge nanoribbons can serve as high-speed interconnects in nanoscale devices due to minimal intrinsic propagation delay ( 4 to 6μs). Thus, our findings provide valuable insights for experimental efforts aimed at developing functional devices based on nitrogen-rich armchair BeN4 nanoribbons.

Abstract Image

扶手椅BeN4纳米带的机动边缘钝化用于高效纳米级互连
本研究利用密度泛函理论研究了F、O和-OH对扶手椅型BeN4纳米带边缘钝化的影响。我们的研究结果表明,纳米带的be边可以被所研究的功能元素/基团钝化,而n边保持化学惰性。电子结构分析表明,F-和oh钝化消除了Be原子的边缘态,从边缘态转变为以体态为主的导电态。量子输运计算表明,beedge模式对电流传导有显著贡献,钝化降低了电子电流。此外,大多数考虑的纳米带结构表现出近似线性的电流-电压(I-V)特性。对互连等效RLC电路的分析表明,f钝化混合边缘纳米带具有极小的固有传播延迟(~ 4 ~ 6μs),可以作为纳米级器件中的高速互连。因此,我们的研究结果为开发基于富氮扶手椅BeN4纳米带的功能器件的实验工作提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信