L. Marini , P. Chithra Lekha , Roop L. Mahajan , T. Devasena
{"title":"Flexible screen-printed graphene oxide-based biosensor for sweat sodium detection","authors":"L. Marini , P. Chithra Lekha , Roop L. Mahajan , T. Devasena","doi":"10.1016/j.cap.2025.09.010","DOIUrl":null,"url":null,"abstract":"<div><div>Sweat contains valuable biomarkers indicative of physiological health conditions such as electrolyte imbalance, stress, and disease, enabling continuous, non-invasive monitoring through miniaturized wearable electrochemical biosensors. Here, a flexible, cost-effective electrochemical sweat Na<sup>+</sup> ion sensor is fabricated using a screen-printing method on a flexible polyethylene terephthalate (PET) substrate. The sensor incorporates a low-cost Ion-Selective Layer (ISL) and graphene oxide (GO) enhancing sensitivity and electrochemical performance across a broad range of Na<sup>+</sup> ions. The sensor exhibits a high sensitivity of 1.213 mA/mM.cm<sup>2</sup>, low limit detection of 14.49 mM, and good stability. Real-time sweat analysis demonstrated Na<sup>+</sup> ion levels of 19 mM in the morning and 23 mM in the evening aligning with the analytical range of Na<sup>+</sup> ion concentration in sweat. This work addresses challenges in precision and individual variability in Na<sup>+</sup> ion concentration highlighting the potential of scalable, affordable sensors in wearables technology for personalized health monitoring.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 145-150"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001890","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sweat contains valuable biomarkers indicative of physiological health conditions such as electrolyte imbalance, stress, and disease, enabling continuous, non-invasive monitoring through miniaturized wearable electrochemical biosensors. Here, a flexible, cost-effective electrochemical sweat Na+ ion sensor is fabricated using a screen-printing method on a flexible polyethylene terephthalate (PET) substrate. The sensor incorporates a low-cost Ion-Selective Layer (ISL) and graphene oxide (GO) enhancing sensitivity and electrochemical performance across a broad range of Na+ ions. The sensor exhibits a high sensitivity of 1.213 mA/mM.cm2, low limit detection of 14.49 mM, and good stability. Real-time sweat analysis demonstrated Na+ ion levels of 19 mM in the morning and 23 mM in the evening aligning with the analytical range of Na+ ion concentration in sweat. This work addresses challenges in precision and individual variability in Na+ ion concentration highlighting the potential of scalable, affordable sensors in wearables technology for personalized health monitoring.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.