Ester-functionalized nonfullerene acceptors modulate crystallinity enabling 20% efficiency organic solar cells with scalability

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gengsui Tian , Yao Chen , Yaohui Li , Lei Liu , Qianyi Ma , Shengnan Duan , Chaisa Uragami , Hideki Hashimoto , Peihao Huang , Chunming Yang , Yang (Michael) Yang , Shirong Lu , Zeyun Xiao
{"title":"Ester-functionalized nonfullerene acceptors modulate crystallinity enabling 20% efficiency organic solar cells with scalability","authors":"Gengsui Tian ,&nbsp;Yao Chen ,&nbsp;Yaohui Li ,&nbsp;Lei Liu ,&nbsp;Qianyi Ma ,&nbsp;Shengnan Duan ,&nbsp;Chaisa Uragami ,&nbsp;Hideki Hashimoto ,&nbsp;Peihao Huang ,&nbsp;Chunming Yang ,&nbsp;Yang (Michael) Yang ,&nbsp;Shirong Lu ,&nbsp;Zeyun Xiao","doi":"10.1016/j.mser.2025.101118","DOIUrl":null,"url":null,"abstract":"<div><div>The strategic molecular design of non-fullerene acceptors (NFAs) is pivotal for enhancing the efficiency of organic solar cells (OSCs). Transitioning from high-efficiency small-area devices to large-area modules requires equally meticulous device engineering, yet this critical aspect is often overlooked. Here, we report two new NFAs (<strong>Pz-E2F</strong> and <strong>Pz-E2Cl</strong>) designed through an ester-functionalization strategy on the phenazine (Pz) core, a departure from conventional halogenation approaches and enhance the OSC performance from 0.1 cm<sup>2</sup> device (20.03 % efficiency) to 19.3 cm<sup>2</sup> modules (15.56 % efficiency). Theoretical and experimental analyses demonstrate that ester functionalization of the central Pz-core enhances electrostatic interactions, crystallinity, and donor-acceptor miscibility compared to the non-ester-functionalized <strong>Pz-2F</strong>, thus improving exciton dissociation efficiency, reducing exciton recombination rates, creating more balanced hole/electron mobility, and enhancing charge generation in OSC devices. This work provides a holistic solution for OSCs by bridging molecular design, nanoscale crystallization, device physics, and module engineering, addressing critical gaps between molecules and modules.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"167 ","pages":"Article 101118"},"PeriodicalIF":31.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001962","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The strategic molecular design of non-fullerene acceptors (NFAs) is pivotal for enhancing the efficiency of organic solar cells (OSCs). Transitioning from high-efficiency small-area devices to large-area modules requires equally meticulous device engineering, yet this critical aspect is often overlooked. Here, we report two new NFAs (Pz-E2F and Pz-E2Cl) designed through an ester-functionalization strategy on the phenazine (Pz) core, a departure from conventional halogenation approaches and enhance the OSC performance from 0.1 cm2 device (20.03 % efficiency) to 19.3 cm2 modules (15.56 % efficiency). Theoretical and experimental analyses demonstrate that ester functionalization of the central Pz-core enhances electrostatic interactions, crystallinity, and donor-acceptor miscibility compared to the non-ester-functionalized Pz-2F, thus improving exciton dissociation efficiency, reducing exciton recombination rates, creating more balanced hole/electron mobility, and enhancing charge generation in OSC devices. This work provides a holistic solution for OSCs by bridging molecular design, nanoscale crystallization, device physics, and module engineering, addressing critical gaps between molecules and modules.
酯功能化的非富勒烯受体调节结晶度,使有机太阳能电池具有20%的效率和可扩展性
非富勒烯受体(nfa)的战略性分子设计是提高有机太阳能电池(OSCs)效率的关键。从高效率的小面积器件过渡到大面积模块同样需要细致的器件工程,然而这一关键方面往往被忽视。在这里,我们报道了两种新的nfa (Pz- e2f和Pz- e2cl)通过在吩那嗪(Pz)核心上的酯功能化策略设计,与传统的卤化方法不同,并将OSC性能从0.1 cm2器件(20.03 %效率)提高到19.3 cm2模块(15.56 %效率)。理论和实验分析表明,与非酯功能化的Pz-2F相比,中心pz核的酯功能化增强了静电相互作用、结晶度和供体-受体混溶性,从而提高了激子解离效率,降低了激子重组速率,创造了更平衡的空穴/电子迁移率,并增强了OSC器件中的电荷生成。这项工作通过连接分子设计,纳米级结晶,器件物理和模块工程,解决分子和模块之间的关键差距,为OSCs提供了整体解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信