Effect of water vapor on nitriding of stainless steel walls induced by ammonia flames

IF 5.2 2区 工程技术 Q2 ENERGY & FUELS
Yujian Xing, Minhyeok Lee, Yuji Suzuki
{"title":"Effect of water vapor on nitriding of stainless steel walls induced by ammonia flames","authors":"Yujian Xing,&nbsp;Minhyeok Lee,&nbsp;Yuji Suzuki","doi":"10.1016/j.proci.2025.105831","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia is a promising candidate fuel for future carbon-free energy systems. However, significant interactions between ammonia flames and metal walls in combustors result in “unwanted” nitriding, compromising safe operation and shortening the lifespan of combustion systems. The substantial water vapor generated during ammonia combustion further influences this flame-wall interaction. This study examines the effect of water vapor on two interconnected processes: the heterogeneous decomposition of ammonia and the nitriding of stainless steel induced by ammonia flames. Ammonia conversion ratios due to heterogeneous decomposition on stainless steel surfaces were measured in a flow reactor under varying water vapor concentrations, and the mechanisms underlying the impact of water vapor on both surface reactivity and surface nitriding were examined. Additionally, the effect of water vapor on nitriding induced by ammonia flames was investigated. The findings confirm that the oxidation effect of water vapor reduces surface reactivity for heterogeneous ammonia decomposition, making it the primary factor behind the hindering effect on nitriding during ammonia combustion.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105831"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748925000458","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia is a promising candidate fuel for future carbon-free energy systems. However, significant interactions between ammonia flames and metal walls in combustors result in “unwanted” nitriding, compromising safe operation and shortening the lifespan of combustion systems. The substantial water vapor generated during ammonia combustion further influences this flame-wall interaction. This study examines the effect of water vapor on two interconnected processes: the heterogeneous decomposition of ammonia and the nitriding of stainless steel induced by ammonia flames. Ammonia conversion ratios due to heterogeneous decomposition on stainless steel surfaces were measured in a flow reactor under varying water vapor concentrations, and the mechanisms underlying the impact of water vapor on both surface reactivity and surface nitriding were examined. Additionally, the effect of water vapor on nitriding induced by ammonia flames was investigated. The findings confirm that the oxidation effect of water vapor reduces surface reactivity for heterogeneous ammonia decomposition, making it the primary factor behind the hindering effect on nitriding during ammonia combustion.
水蒸气对氨火焰诱导不锈钢壁渗氮的影响
氨是未来无碳能源系统中很有前途的候选燃料。然而,在燃烧器中,氨火焰和金属壁之间的显著相互作用导致“不必要的”氮化,危及安全运行并缩短燃烧系统的寿命。氨燃烧过程中产生的大量水蒸气进一步影响了这种火焰-壁面相互作用。本研究考察了水蒸气对两个相互关联的过程的影响:氨的非均相分解和氨火焰引起的不锈钢氮化。在流动反应器中测量了不同水蒸气浓度下不锈钢表面非均相分解引起的氨转化率,并探讨了水蒸气对表面反应性和表面氮化的影响机制。此外,还研究了水蒸气对氨火焰致氮化的影响。研究结果证实,水蒸气的氧化作用降低了非均相氨分解的表面反应性,是氨燃烧过程中阻碍氮化的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信