Electronic correlation effects on zinc-ion migration in V2O5: A DFT+U study

IF 4.9 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Y.M. Plotnikov , Dm.M. Korotin
{"title":"Electronic correlation effects on zinc-ion migration in V2O5: A DFT+U study","authors":"Y.M. Plotnikov ,&nbsp;Dm.M. Korotin","doi":"10.1016/j.jpcs.2025.113172","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the role of on-site Coulomb interactions in determining the structural, electronic, and ion transport properties of Zn<sub>0.5</sub>V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> using density functional theory with Hubbard <span><math><mi>U</mi></math></span> correction (DFT+<span><math><mi>U</mi></math></span>). We analyze the system’s properties as a function of the Hubbard parameter and compute its <em>ab initio</em> value using density functional perturbation theory. Our calculations reveal a metal-to-insulator transition in Zn<sub>0.5</sub>V<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> at <span><math><mrow><mi>U</mi><mo>≈</mo><mn>2</mn><mspace></mspace><mi>eV</mi></mrow></math></span>, accompanied by the emergence of antiferromagnetic ordering on vanadium sites and significant structural modifications. Most importantly, we demonstrate that Zn ion migration barriers exhibit non-monotonic dependence on the correlation strength. While the migration barrier (0.376 eV) calculated using the <em>ab initio</em> <span><math><mi>U</mi></math></span> value appears similar to that (0.353 eV) from nonmagnetic DFT calculations, the underlying electronic and magnetic structures differ fundamentally, highlighting the critical importance of properly accounting for correlation effects in this system. Furthermore, our differential charge density analysis reveals that the change in localization of electronic states with increasing <span><math><mi>U</mi></math></span> strongly affects the interaction between the Zn ion and the host structure, playing a crucial role in determining the migration behavior.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 113172"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725006250","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the role of on-site Coulomb interactions in determining the structural, electronic, and ion transport properties of Zn0.5V2O5 using density functional theory with Hubbard U correction (DFT+U). We analyze the system’s properties as a function of the Hubbard parameter and compute its ab initio value using density functional perturbation theory. Our calculations reveal a metal-to-insulator transition in Zn0.5V2O5 at U2eV, accompanied by the emergence of antiferromagnetic ordering on vanadium sites and significant structural modifications. Most importantly, we demonstrate that Zn ion migration barriers exhibit non-monotonic dependence on the correlation strength. While the migration barrier (0.376 eV) calculated using the ab initio U value appears similar to that (0.353 eV) from nonmagnetic DFT calculations, the underlying electronic and magnetic structures differ fundamentally, highlighting the critical importance of properly accounting for correlation effects in this system. Furthermore, our differential charge density analysis reveals that the change in localization of electronic states with increasing U strongly affects the interaction between the Zn ion and the host structure, playing a crucial role in determining the migration behavior.
V2O5中锌离子迁移的电子相关效应:DFT+U研究
本文利用Hubbard U校正(DFT+U)的密度泛函理论研究了现场库仑相互作用在决定Zn0.5V2O5结构、电子和离子输运性质中的作用。我们分析了系统的性质作为Hubbard参数的函数,并利用密度泛函摄动理论计算了它的从头计算值。我们的计算表明,在U≈2eV时,Zn0.5V2O5中出现了金属到绝缘体的转变,伴随着钒位点上反铁磁有序的出现和显著的结构改变。最重要的是,我们证明了Zn离子迁移势垒对相关强度具有非单调依赖性。虽然使用从头算U值计算的迁移势垒(0.376 eV)与非磁性DFT计算的迁移势垒(0.353 eV)相似,但潜在的电子和磁性结构存在根本差异,这突出了在该系统中适当考虑相关效应的重要性。此外,我们的差分电荷密度分析表明,随着U的增加,电子态局域化的变化强烈影响Zn离子与宿主结构之间的相互作用,在决定迁移行为中起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信