Unsupervised sentence selection for creating a representative corpus in Turkish: An active learning approach

IF 4.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hayri Volkan Agun
{"title":"Unsupervised sentence selection for creating a representative corpus in Turkish: An active learning approach","authors":"Hayri Volkan Agun","doi":"10.1016/j.artint.2025.104422","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, active learning methods adapted for sentence selection of Turkish sentences are evaluated through language learning with neural models. Turkish is an agglutinative language with a complex morphology, where the linguistic properties of words are encoded in suffixes. The active learning methods based on regression, clustering, language models, distance metrics, and neural networks are applied to unlabeled sentence selection. In this respect, a sentence corpus is selected from a larger corpus, with the same number of samples for each target word in intrinsic and extrinsic evaluation tasks. The selected sentences are used for the training of SkipGram, CBOW, and self-attention LSTM language models and extracted embeddings are evaluated by the semantic analogy, POS and sentiment analysis tasks. The evaluation scores of the models trained on the samples selected by the active learning method are compared. The results of the selected sentences based on language models indicate an improvement over random selection based on a static vocabulary. These results also show that the selection affects the quality of unsupervised word embedding extraction even if the target vocabulary is kept the same. Along with the accuracy, the time efficiency of the language models is shown to be better than other methods especially methods based on neural network models, and distance metrics.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"348 ","pages":"Article 104422"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225001419","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, active learning methods adapted for sentence selection of Turkish sentences are evaluated through language learning with neural models. Turkish is an agglutinative language with a complex morphology, where the linguistic properties of words are encoded in suffixes. The active learning methods based on regression, clustering, language models, distance metrics, and neural networks are applied to unlabeled sentence selection. In this respect, a sentence corpus is selected from a larger corpus, with the same number of samples for each target word in intrinsic and extrinsic evaluation tasks. The selected sentences are used for the training of SkipGram, CBOW, and self-attention LSTM language models and extracted embeddings are evaluated by the semantic analogy, POS and sentiment analysis tasks. The evaluation scores of the models trained on the samples selected by the active learning method are compared. The results of the selected sentences based on language models indicate an improvement over random selection based on a static vocabulary. These results also show that the selection affects the quality of unsupervised word embedding extraction even if the target vocabulary is kept the same. Along with the accuracy, the time efficiency of the language models is shown to be better than other methods especially methods based on neural network models, and distance metrics.
创建土耳其语代表性语料库的无监督句子选择:一种主动学习方法
在本研究中,通过神经模型的语言学习,评估了适用于土耳其语句子选择的主动学习方法。土耳其语是一种具有复杂形态学的黏合语言,其中单词的语言属性编码在后缀中。将基于回归、聚类、语言模型、距离度量和神经网络的主动学习方法应用于无标记句子的选择。在这方面,从一个更大的语料库中选择一个句子语料库,在内在和外在评价任务中,每个目标词的样本数量相同。选择的句子用于训练SkipGram、CBOW和自关注LSTM语言模型,提取的嵌入通过语义类比、POS和情感分析任务进行评估。比较了采用主动学习方法训练的模型的评价分数。基于语言模型的句子选择结果表明,与基于静态词汇表的随机选择相比,该方法有了改进。这些结果还表明,即使目标词汇保持不变,选择也会影响无监督词嵌入提取的质量。在提高准确率的同时,语言模型的时间效率也优于其他方法,特别是基于神经网络模型和距离度量的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信