Effect of the functional groups on the electrochemical properties of the Mo2V2C3Tx MXene as anode in metal ion batteries

IF 4.9 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Raúl Santoy-Flores , Jair Domínguez-Godínez , D.M. Hoat , Jonathan Guerrero-Sánchez , María G. Moreno-Armenta , Rodrigo Ponce-Pérez
{"title":"Effect of the functional groups on the electrochemical properties of the Mo2V2C3Tx MXene as anode in metal ion batteries","authors":"Raúl Santoy-Flores ,&nbsp;Jair Domínguez-Godínez ,&nbsp;D.M. Hoat ,&nbsp;Jonathan Guerrero-Sánchez ,&nbsp;María G. Moreno-Armenta ,&nbsp;Rodrigo Ponce-Pérez","doi":"10.1016/j.jpcs.2025.113225","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigate the structural stability, ion mobility, and charge storage mechanisms of the double transition metal Mo<sub>2</sub>V<sub>2</sub>C<sub>3</sub>T<sub>x</sub> MXenes using DFT calculations. The ion intercalation mechanism was explored, and the role of O, F, Cl, Br, and OH functional groups on the Mo<sub>2</sub>V<sub>2</sub>C<sub>3</sub>T<sub>x</sub> anode for Li, Na, K, Mg, and Ca batteries was inspected. Electrochemical performance was evaluated using the theoretical open-circuit voltage (OCV) method, which determined the gravimetric capacity of each terminated Mo<sub>2</sub>V<sub>2</sub>C<sub>3</sub>T<sub>x</sub> for each ion. Notably, the O-terminated material demonstrates the highest gravimetric capacity of 222.1 mAh/g. In contrast, an unexpected outcome was achieved by the Br-terminated Mo<sub>2</sub>V<sub>2</sub>C<sub>3</sub>T<sub>x</sub>, which exhibits an elevated gravimetric capacity of 165.4 mAh/g for Ca-based batteries, thereby enhancing the Ca diffusion. Additionally, Mo<sub>2</sub>V<sub>2</sub>C<sub>3</sub>O<sub>2</sub> as an anode for Li- and Na-batteries, exhibits a gravimetric capacity of 148.1 mAh/g and displays good electrochemical behavior. Finally, the Mo<sub>2</sub>V<sub>2</sub>C<sub>3</sub>Cl<sub>2</sub> exhibits promising electrochemical behavior, and the energy barriers for alkali ions are comparable to the –O, -Br, and -Cl terminated Mo<sub>2</sub>V<sub>2</sub>C<sub>3</sub>T<sub>x</sub>. Our findings suggest that Mo<sub>2</sub>V<sub>2</sub>C<sub>3</sub>T<sub>x</sub> is a promising anode for alkali-ion batteries.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 113225"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002236972500678X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate the structural stability, ion mobility, and charge storage mechanisms of the double transition metal Mo2V2C3Tx MXenes using DFT calculations. The ion intercalation mechanism was explored, and the role of O, F, Cl, Br, and OH functional groups on the Mo2V2C3Tx anode for Li, Na, K, Mg, and Ca batteries was inspected. Electrochemical performance was evaluated using the theoretical open-circuit voltage (OCV) method, which determined the gravimetric capacity of each terminated Mo2V2C3Tx for each ion. Notably, the O-terminated material demonstrates the highest gravimetric capacity of 222.1 mAh/g. In contrast, an unexpected outcome was achieved by the Br-terminated Mo2V2C3Tx, which exhibits an elevated gravimetric capacity of 165.4 mAh/g for Ca-based batteries, thereby enhancing the Ca diffusion. Additionally, Mo2V2C3O2 as an anode for Li- and Na-batteries, exhibits a gravimetric capacity of 148.1 mAh/g and displays good electrochemical behavior. Finally, the Mo2V2C3Cl2 exhibits promising electrochemical behavior, and the energy barriers for alkali ions are comparable to the –O, -Br, and -Cl terminated Mo2V2C3Tx. Our findings suggest that Mo2V2C3Tx is a promising anode for alkali-ion batteries.
官能团对金属离子电池阳极Mo2V2C3Tx MXene电化学性能的影响
在这项工作中,我们利用DFT计算研究了双过渡金属Mo2V2C3Tx MXenes的结构稳定性、离子迁移率和电荷存储机制。探讨了离子插层机理,考察了O、F、Cl、Br、OH官能团在Mo2V2C3Tx阳极上对Li、Na、K、Mg、Ca电池的作用。采用理论开路电压(OCV)法评价电化学性能,该方法确定了每个端接Mo2V2C3Tx对每个离子的重量容量。值得注意的是,o端材料的重量容量最高,为222.1 mAh/g。相比之下,端接br的Mo2V2C3Tx取得了意想不到的结果,其重量容量提高到165.4 mAh/g,从而增强了Ca的扩散。此外,Mo2V2C3O2作为锂电池和钠电池的阳极,具有148.1 mAh/g的重量容量和良好的电化学性能。最后,Mo2V2C3Cl2表现出良好的电化学行为,碱离子的能垒与端接-O、-Br和-Cl的Mo2V2C3Tx相当。我们的研究结果表明,Mo2V2C3Tx是一种很有前途的碱离子电池阳极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信