Unsymmetrical Phosphinoquinoline Iron(II) Complexes with Enhanced Thermal Stability and High Activity for Isoprene Polymerization

IF 2.9 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Shengli Jin, , , Long Liu, , and , Fei Lin*, 
{"title":"Unsymmetrical Phosphinoquinoline Iron(II) Complexes with Enhanced Thermal Stability and High Activity for Isoprene Polymerization","authors":"Shengli Jin,&nbsp;, ,&nbsp;Long Liu,&nbsp;, and ,&nbsp;Fei Lin*,&nbsp;","doi":"10.1021/acs.organomet.5c00157","DOIUrl":null,"url":null,"abstract":"<p >Polyisoprene is the most important composition of natural rubber. The green catalytic polymerization of isoprene by earth-abundant metal iron is a promising next-generation manufacturing process in the rubber industry. We now show that a series of unsymmetrical phosphinoquinoline Fe(II) precatalysts can efficiently catalyze isoprene polymerization, producing polyisoprene elastomers with controlled microstructures. The structures of these designed Fe(II) complexes were well-defined by NMR spectra and X-ray single crystal diffraction analysis. Activation with only 5 equiv of dMAO (dry methylaluminoxane) enabled the phosphinoquinoline Fe(II) complexes to catalyze isoprene polymerization with remarkable activity (up to 3431 kg<sub>PI</sub>·mol<sub>Fe</sub><sup>–1</sup>·h<sup>–1</sup>), yielding polyisoprene with a predominantly <i>cis</i>-1,4/3,4 mixed microstructure (ca. 1:1 ratio). The bidentate <i>N,P</i>-ligands, containing strongly coordinating phosphorus atoms, effectively stabilized the iron active centers, offering high monomer conversion and polyisoprene with high molecular weight at approximately 10<sup>5</sup> Da across a broad temperature range (−10 to 100 °C). Control over polymerization activity and polyisoprene microstructure was achieved by modifying the ligand structures. Aryl-substituted catalysts exhibited high activity (409 kg<sub>PI</sub>·mol<sub>Fe</sub><sup>–1</sup>·h<sup>–1</sup>) and excellent <i>cis</i>-1,4 stereoselectivity (<i>cis</i>-1,4/<i>trans</i>-1,4 &gt; 97:1), highlighting the synergistic effects of ligand electronic and steric properties on catalytic performance and the isoprene coordination–insertion polymerization mechanism.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"44 18","pages":"2025–2034"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organometallics","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.organomet.5c00157","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Polyisoprene is the most important composition of natural rubber. The green catalytic polymerization of isoprene by earth-abundant metal iron is a promising next-generation manufacturing process in the rubber industry. We now show that a series of unsymmetrical phosphinoquinoline Fe(II) precatalysts can efficiently catalyze isoprene polymerization, producing polyisoprene elastomers with controlled microstructures. The structures of these designed Fe(II) complexes were well-defined by NMR spectra and X-ray single crystal diffraction analysis. Activation with only 5 equiv of dMAO (dry methylaluminoxane) enabled the phosphinoquinoline Fe(II) complexes to catalyze isoprene polymerization with remarkable activity (up to 3431 kgPI·molFe–1·h–1), yielding polyisoprene with a predominantly cis-1,4/3,4 mixed microstructure (ca. 1:1 ratio). The bidentate N,P-ligands, containing strongly coordinating phosphorus atoms, effectively stabilized the iron active centers, offering high monomer conversion and polyisoprene with high molecular weight at approximately 105 Da across a broad temperature range (−10 to 100 °C). Control over polymerization activity and polyisoprene microstructure was achieved by modifying the ligand structures. Aryl-substituted catalysts exhibited high activity (409 kgPI·molFe–1·h–1) and excellent cis-1,4 stereoselectivity (cis-1,4/trans-1,4 > 97:1), highlighting the synergistic effects of ligand electronic and steric properties on catalytic performance and the isoprene coordination–insertion polymerization mechanism.

Abstract Image

非对称磷酰喹啉铁(II)配合物对异戊二烯聚合具有增强热稳定性和高活性
聚异戊二烯是天然橡胶最重要的成分。稀土金属铁绿色催化聚合异戊二烯是橡胶工业中很有前途的新一代制造工艺。我们现在证明了一系列不对称的膦喹啉铁(II)预催化剂可以有效地催化异戊二烯聚合,生产具有可控微观结构的聚异戊二烯弹性体。通过核磁共振波谱和x射线单晶衍射分析,确定了所设计的Fe(II)配合物的结构。用5等量的dMAO(干甲基铝氧烷)活化后,膦喹啉Fe(II)配合物催化异戊二烯聚合的活性显著(最高可达3431 kgPI·molFe-1·h-1),生成的聚异戊二烯以顺式-1,4/3,4混合微观结构为主(比例约为1:1)。双齿N, p配体含有强配位的磷原子,有效地稳定了铁活性中心,在宽温度范围(- 10至100°C)内提供高单体转化率和高分子量聚异戊二烯。通过修饰配体结构来控制聚合活性和聚异戊二烯的微观结构。芳基取代催化剂表现出高活性(409 kgPI·molFe-1·h-1)和优异的顺式-1,4立体选择性(顺式-1,4/反式-1,4 > 97:1),突出了配体电子和空间性质对催化性能和异戊二烯配位-插入聚合机理的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organometallics
Organometallics 化学-无机化学与核化学
CiteScore
5.60
自引率
7.10%
发文量
382
审稿时长
1.7 months
期刊介绍: Organometallics is the flagship journal of organometallic chemistry and records progress in one of the most active fields of science, bridging organic and inorganic chemistry. The journal publishes Articles, Communications, Reviews, and Tutorials (instructional overviews) that depict research on the synthesis, structure, bonding, chemical reactivity, and reaction mechanisms for a variety of applications, including catalyst design and catalytic processes; main-group, transition-metal, and lanthanide and actinide metal chemistry; synthetic aspects of polymer science and materials science; and bioorganometallic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信