Dominating effect of extreme precipitation over potential groundwater recharge beneath shallow rooted vegetation

IF 6.3 1区 地球科学 Q1 ENGINEERING, CIVIL
Han Li , Guanpeng Dong , Min Min , Huijie Li , Jingjing Jin , Han Wang , Bingcheng Si , Changhong Miao , Dong Wang
{"title":"Dominating effect of extreme precipitation over potential groundwater recharge beneath shallow rooted vegetation","authors":"Han Li ,&nbsp;Guanpeng Dong ,&nbsp;Min Min ,&nbsp;Huijie Li ,&nbsp;Jingjing Jin ,&nbsp;Han Wang ,&nbsp;Bingcheng Si ,&nbsp;Changhong Miao ,&nbsp;Dong Wang","doi":"10.1016/j.jhydrol.2025.134293","DOIUrl":null,"url":null,"abstract":"<div><div>Potential groundwater recharge (PGR) beneath shallow-rooted vegetation, a dominant ecosystem in temperate and arid regions, remains poorly understood. Current global syntheses are hindered by methodological inconsistencies and mixed temporal scales, particularly in relatively homogeneous soil environments like the Loess Plateau, where shallow-rooted crops/grasslands dominate but regional PGR controls are uncharacterized. This study uses the tritium peak method (35 profiles, tritium peak depth 3.6–26.4 m) and partial least squares structural equation modeling (PLS-SEM) to quantify PGR (8.8–93.0 mm yr<sup>−1</sup> over the past five decades, mean 43.0 ± 3.7 mm yr<sup>−1</sup>) and drivers. Extreme precipitation (EP) is the sole significant driver, explaining 50.5 % of PGR variance (path coefficient = 0.667, p &lt; 0.001), with negligible empirical effects of soil texture (silt-dominated), shallow roots (95 % above 2.0 m), and soil hydraulic properties. The tritium method’s unified temporal scale (past five decades) and single-variable design eliminate parameter biases, confirming EP-driven pulse infiltration bypasses shallow roots and relatively homogeneous loess soils. This study reveals PGR in shallow-rooted, uniform soil systems is climate-dominated, offering an EP-centric framework for regional hydrological modeling and water management globally.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"663 ","pages":"Article 134293"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425016336","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Potential groundwater recharge (PGR) beneath shallow-rooted vegetation, a dominant ecosystem in temperate and arid regions, remains poorly understood. Current global syntheses are hindered by methodological inconsistencies and mixed temporal scales, particularly in relatively homogeneous soil environments like the Loess Plateau, where shallow-rooted crops/grasslands dominate but regional PGR controls are uncharacterized. This study uses the tritium peak method (35 profiles, tritium peak depth 3.6–26.4 m) and partial least squares structural equation modeling (PLS-SEM) to quantify PGR (8.8–93.0 mm yr−1 over the past five decades, mean 43.0 ± 3.7 mm yr−1) and drivers. Extreme precipitation (EP) is the sole significant driver, explaining 50.5 % of PGR variance (path coefficient = 0.667, p < 0.001), with negligible empirical effects of soil texture (silt-dominated), shallow roots (95 % above 2.0 m), and soil hydraulic properties. The tritium method’s unified temporal scale (past five decades) and single-variable design eliminate parameter biases, confirming EP-driven pulse infiltration bypasses shallow roots and relatively homogeneous loess soils. This study reveals PGR in shallow-rooted, uniform soil systems is climate-dominated, offering an EP-centric framework for regional hydrological modeling and water management globally.

Abstract Image

极端降水对浅根植被下潜在地下水补给的主导作用
浅根植被是温带和干旱区的主要生态系统,但对其潜在地下水补给(PGR)仍知之甚少。目前的全球综合受到方法不一致和混合时间尺度的阻碍,特别是在黄土高原等相对均匀的土壤环境中,浅根作物/草地占主导地位,但区域PGR控制尚未表征。本研究采用氚峰法(35条剖面,氚峰深度3.6-26.4 m)和偏最小二乘结构方程模型(PLS-SEM)量化了PGR(过去50年8.8-93.0 mm yr - 1,平均43.0±3.7 mm yr - 1)和驱动因素。极端降水(EP)是唯一的显著驱动因素,解释了50.5%的PGR方差(通径系数= 0.667,p < 0.001),而土壤质地(粉砂为主)、浅根(95%高于2.0 m)和土壤水力特性的经验影响可以忽略不计。氚方法的统一时间尺度(过去50年)和单变量设计消除了参数偏差,证实了ep驱动的脉冲入渗绕过浅根和相对均匀的黄土土壤。该研究揭示了浅根均匀土壤系统中的PGR是气候主导的,为全球区域水文建模和水管理提供了一个以ep为中心的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信