On sketch-and-project methods for solving tensor equations

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Ling Tang , Yanjun Zhang , Hanyu Li
{"title":"On sketch-and-project methods for solving tensor equations","authors":"Ling Tang ,&nbsp;Yanjun Zhang ,&nbsp;Hanyu Li","doi":"10.1016/j.amc.2025.129735","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a regular sketch-and-project method for solving linear tensor equations based on the t-product and present its equivalent Fourier domain version, along with several special cases corresponding to existing classical matrix equation methods. Furthermore, we extend this framework via a hierarchical approach to solve generalized Sylvester tensor equations. All the methods are proved to converge linearly in expectation. Finally, numerical experiments demonstrate the efficiency and effectiveness of the proposed approach.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"511 ","pages":"Article 129735"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004606","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a regular sketch-and-project method for solving linear tensor equations based on the t-product and present its equivalent Fourier domain version, along with several special cases corresponding to existing classical matrix equation methods. Furthermore, we extend this framework via a hierarchical approach to solve generalized Sylvester tensor equations. All the methods are proved to converge linearly in expectation. Finally, numerical experiments demonstrate the efficiency and effectiveness of the proposed approach.
求解张量方程的草图-投影法
我们提出了一种基于t积的求解线性张量方程的常规草图-投影方法,并给出了其等效的傅里叶域版本,以及与现有经典矩阵方程方法相对应的几个特殊情况。此外,我们通过一个层次方法扩展这个框架来求解广义Sylvester张量方程。所有方法在期望上都是线性收敛的。最后,通过数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信