Sarah E. Kivimaki, Samantha Dempsey, Collette Camper, Julia M. Tani, William K. Ray, Ian K. Hicklin, Richard F. Helm, Crysten E. Blaby-Haas, Anne M. Brown, Stephen B. Melville
{"title":"Type IV Pili-Associated Secretion of a Biofilm Matrix Protein From Clostridium perfringens That Forms Intermolecular Isopeptide Bonds","authors":"Sarah E. Kivimaki, Samantha Dempsey, Collette Camper, Julia M. Tani, William K. Ray, Ian K. Hicklin, Richard F. Helm, Crysten E. Blaby-Haas, Anne M. Brown, Stephen B. Melville","doi":"10.1111/mmi.70020","DOIUrl":null,"url":null,"abstract":"<i>Clostridium perfringens</i> is a gram-positive, anaerobic, spore-forming bacterial pathogen of humans and animals. <i>C. perfringens</i> also produces type IV pili (T4P) and has two complete sets of T4P-associated genes, one of which has been shown to produce surface pili needed for cell adherence. One hypothesis about the second set of T4P genes is that they comprise a type II secretion system (TTSS) like those found in gram-negative bacteria, but for gram-positive bacteria, the TTSS would aid transit across the thick peptidoglycan (PG) layer. The secretome of mutants lacking type IV pilins was examined, and a single protein, BsaC (CPE0517), was identified as being dependent on pilin PilA3 for secretion. The <i>bsaC</i> gene is in an operon with genes encoding a SipW signal peptidase and two putative biofilm matrix proteins, BsaA and BsaB, both of which have remote homology to <i>Bacillus subtilis</i> biofilm protein TasA. Since BsaA forms long oligomers that are secreted, we analyzed BsaA monomer interactions with <i>de novo</i> modeling. These models projected that the monomers formed isopeptide bonds as part of a donor strand exchange process. Mutations in residues predicted to form the isopeptide bonds led to the loss of oligomerization, supporting an exchange and lock mechanism, and isopeptide bonds were detected by mass spectrometry methods. Phylogenetic analysis showed the BsaA family of proteins is widespread among bacteria and archaea, but only a subset is predicted to form isopeptide bonds.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.70020","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clostridium perfringens is a gram-positive, anaerobic, spore-forming bacterial pathogen of humans and animals. C. perfringens also produces type IV pili (T4P) and has two complete sets of T4P-associated genes, one of which has been shown to produce surface pili needed for cell adherence. One hypothesis about the second set of T4P genes is that they comprise a type II secretion system (TTSS) like those found in gram-negative bacteria, but for gram-positive bacteria, the TTSS would aid transit across the thick peptidoglycan (PG) layer. The secretome of mutants lacking type IV pilins was examined, and a single protein, BsaC (CPE0517), was identified as being dependent on pilin PilA3 for secretion. The bsaC gene is in an operon with genes encoding a SipW signal peptidase and two putative biofilm matrix proteins, BsaA and BsaB, both of which have remote homology to Bacillus subtilis biofilm protein TasA. Since BsaA forms long oligomers that are secreted, we analyzed BsaA monomer interactions with de novo modeling. These models projected that the monomers formed isopeptide bonds as part of a donor strand exchange process. Mutations in residues predicted to form the isopeptide bonds led to the loss of oligomerization, supporting an exchange and lock mechanism, and isopeptide bonds were detected by mass spectrometry methods. Phylogenetic analysis showed the BsaA family of proteins is widespread among bacteria and archaea, but only a subset is predicted to form isopeptide bonds.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.