Self-driven aldol condensation enabling high-purity Li2CO3 recovery from spent lithium metal anodes

IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-09-22 DOI:10.1016/j.joule.2025.102136
Hao Zhou, Jaemin Kim, Jiahui Hou, Zifei Meng, Zeyi Yao, Zexin Wang, Yan Wang
{"title":"Self-driven aldol condensation enabling high-purity Li2CO3 recovery from spent lithium metal anodes","authors":"Hao Zhou, Jaemin Kim, Jiahui Hou, Zifei Meng, Zeyi Yao, Zexin Wang, Yan Wang","doi":"10.1016/j.joule.2025.102136","DOIUrl":null,"url":null,"abstract":"Rechargeable lithium (Li)-metal batteries with high energy densities are approaching large-scale commercialization but face challenges in recycling due to the high reactivity of spent Li-metal anodes (S-LMAs). Here, we propose a recovery strategy using commercial acetone containing &lt;1.00 wt % water. Sub-percent water first reacts with S-LMA to form LiOH, which consumes Li dendrites and mitigates safety risks. Then, LiOH catalyzes acetone aldol condensation to low-concentration diacetone alcohol (DAA, &lt;5 mol %), which further reacts with S-LMA at acceptable rates and simultaneously drives the DAA production, thus achieving complete conversion of S-LMA. This approach yields high-purity Li<sub>2</sub>CO<sub>3</sub> (99.79 wt %), surpassing the battery-grade standard (99.50 wt %). The recovered Li<sub>2</sub>CO<sub>3</sub> enables the synthesis of LiNi<sub>0.6</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> cathodes with electrochemical performance comparable to those from commercial Li<sub>2</sub>CO<sub>3</sub>. Combining safety, scalability, and economic viability, this method provides a practical route for recycling rechargeable Li-metal batteries and offers insights for extending to other alkali-metal-based batteries.","PeriodicalId":343,"journal":{"name":"Joule","volume":"162 1","pages":""},"PeriodicalIF":35.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.102136","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable lithium (Li)-metal batteries with high energy densities are approaching large-scale commercialization but face challenges in recycling due to the high reactivity of spent Li-metal anodes (S-LMAs). Here, we propose a recovery strategy using commercial acetone containing <1.00 wt % water. Sub-percent water first reacts with S-LMA to form LiOH, which consumes Li dendrites and mitigates safety risks. Then, LiOH catalyzes acetone aldol condensation to low-concentration diacetone alcohol (DAA, <5 mol %), which further reacts with S-LMA at acceptable rates and simultaneously drives the DAA production, thus achieving complete conversion of S-LMA. This approach yields high-purity Li2CO3 (99.79 wt %), surpassing the battery-grade standard (99.50 wt %). The recovered Li2CO3 enables the synthesis of LiNi0.6Mn0.2Co0.2O2 cathodes with electrochemical performance comparable to those from commercial Li2CO3. Combining safety, scalability, and economic viability, this method provides a practical route for recycling rechargeable Li-metal batteries and offers insights for extending to other alkali-metal-based batteries.

Abstract Image

从废锂金属阳极中回收高纯度Li2CO3的自驱动醛醇缩合
具有高能量密度的可充电锂(Li)金属电池正接近大规模商业化,但由于废锂金属阳极(S-LMAs)的高反应性,在回收方面面临挑战。在这里,我们提出了一种回收策略,使用含有<;1.00 wt %水的商业丙酮。低于百分之一的水首先与S-LMA反应形成LiOH, LiOH消耗了Li枝晶,降低了安全风险。然后,LiOH催化丙酮醛缩合生成低浓度的二丙酮醇(DAA, < 5mol %),再与S-LMA以可接受的速率反应,同时驱动DAA的生成,从而实现S-LMA的完全转化。这种方法可以产生高纯度的Li2CO3 (99.79 wt %),超过电池级标准(99.50 wt %)。回收的Li2CO3可以合成电化学性能与商用Li2CO3相当的LiNi0.6Mn0.2Co0.2O2阴极。该方法结合了安全性、可扩展性和经济可行性,为可充电锂金属电池的回收提供了一条实用的途径,并为扩展到其他碱金属电池提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信