Parallel and Perpendicular Diffusion of Energetic Particles in the Near-Sun Solar Wind Observed by Parker Solar Probe

Nibuna S. M. Subashchandar, Lingling Zhao, Andreas Shalchi, Gary Zank, Jakobus Le Roux, Hui Li, Xingyu Zhu, Ashok Silwal and Juan G. Alonso Guzman
{"title":"Parallel and Perpendicular Diffusion of Energetic Particles in the Near-Sun Solar Wind Observed by Parker Solar Probe","authors":"Nibuna S. M. Subashchandar, Lingling Zhao, Andreas Shalchi, Gary Zank, Jakobus Le Roux, Hui Li, Xingyu Zhu, Ashok Silwal and Juan G. Alonso Guzman","doi":"10.3847/2041-8213/ae063f","DOIUrl":null,"url":null,"abstract":"We investigate energetic particle diffusion in the inner heliosphere (∼0.06–0.3 au) explored by Parker Solar Probe (PSP). Parallel (κ∥) and perpendicular (κ⊥) diffusion coefficients are calculated using second-order quasi-linear theory (SOQLT) and unified nonlinear transport theory, respectively. PSP’s in situ measurements of magnetic turbulence spectra, including sub-Alfvénic solar wind, are decomposed into parallel and perpendicular wavenumber spectra via a composite two-component turbulence model. These spectra are then used to compute κ∥ and κ⊥ across energies ranging from sub-GeV to GeV. Our results reveal a strong energy and radial distance dependence in κ∥. While κ⊥remains much smaller, it can rise accordingly in regions with relatively high turbulence levels δB/B0. To validate our results, we estimate κ∥ using an upstream time-intensity profile of a solar energetic particle event observed by the PSP and compare it with theoretical values from different diffusion models. Our results suggest that the SOQLT-calculated parallel diffusion generally shows better agreement with solar energetic particle intensity-derived estimates than the classic quasi-linear theory model. This indicates that the SOQLT framework, which incorporates resonance broadening and nonlinear corrections and does not require the introduction of an ad hoc pitch-angle cutoff, may provide a more physically motivated description of energetic particle diffusion near the Sun.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"194 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ae063f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate energetic particle diffusion in the inner heliosphere (∼0.06–0.3 au) explored by Parker Solar Probe (PSP). Parallel (κ∥) and perpendicular (κ⊥) diffusion coefficients are calculated using second-order quasi-linear theory (SOQLT) and unified nonlinear transport theory, respectively. PSP’s in situ measurements of magnetic turbulence spectra, including sub-Alfvénic solar wind, are decomposed into parallel and perpendicular wavenumber spectra via a composite two-component turbulence model. These spectra are then used to compute κ∥ and κ⊥ across energies ranging from sub-GeV to GeV. Our results reveal a strong energy and radial distance dependence in κ∥. While κ⊥remains much smaller, it can rise accordingly in regions with relatively high turbulence levels δB/B0. To validate our results, we estimate κ∥ using an upstream time-intensity profile of a solar energetic particle event observed by the PSP and compare it with theoretical values from different diffusion models. Our results suggest that the SOQLT-calculated parallel diffusion generally shows better agreement with solar energetic particle intensity-derived estimates than the classic quasi-linear theory model. This indicates that the SOQLT framework, which incorporates resonance broadening and nonlinear corrections and does not require the introduction of an ad hoc pitch-angle cutoff, may provide a more physically motivated description of energetic particle diffusion near the Sun.
帕克太阳探测器观测到的近日太阳风中高能粒子的平行和垂直扩散
我们研究了帕克太阳探测器(PSP)探测到的内日球层(~ 0.06-0.3 au)的高能粒子扩散。平行(κ∥)和垂直(κ⊥)扩散系数分别使用二阶拟线性理论(SOQLT)和统一非线性输运理论计算。利用复合双分量湍流模型,将PSP实测的包括亚阿尔夫萨奇期太阳风在内的磁湍流谱分解为平行波数和垂直波数谱。然后,这些光谱用于计算从sub-GeV到GeV的能量范围内的κ∥和κ⊥。我们的研究结果揭示了κ∥强烈的能量和径向距离依赖性。虽然κ⊥仍然小得多,但在湍流水平相对较高的地区δB/B0,它可以相应上升。为了验证我们的结果,我们使用PSP观测到的太阳高能粒子事件的上游时间强度剖面来估计κ∥,并将其与不同扩散模型的理论值进行比较。我们的研究结果表明,soqlt计算的平行扩散与太阳高能粒子强度估计相比,通常比经典的准线性理论模型更符合。这表明,SOQLT框架,结合共振展宽和非线性修正,不需要引入特别的俯角截止,可以提供一个更物理动机的高能粒子在太阳附近扩散的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信