Thermal conversion of metal hydroxide acrylate nanoparticles immobilized on TiO2 toward noble-metal-free photocatalytic H2 production.

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-09-22 DOI:10.1039/d5nr02166a
Naoki Tarutani,Rei Nitomakida,Kiyofumi Katagiri,Kei Inumaru,Sayako Inoué,Hiroki Yamada,Toshiaki Ina,Yousuke Ooyama
{"title":"Thermal conversion of metal hydroxide acrylate nanoparticles immobilized on TiO2 toward noble-metal-free photocatalytic H2 production.","authors":"Naoki Tarutani,Rei Nitomakida,Kiyofumi Katagiri,Kei Inumaru,Sayako Inoué,Hiroki Yamada,Toshiaki Ina,Yousuke Ooyama","doi":"10.1039/d5nr02166a","DOIUrl":null,"url":null,"abstract":"Developing efficient and noble-metal-free photocatalysts for hydrogen evolution is a central challenge in solar fuel production. Herein, we report a strategy to enhance the photocatalytic activity of rutile TiO2 by immobilising nickel hydroxide acrylate (NHA) nanoparticles, which serve as thermally convert cocatalyst precursors. Upon heat-treatment under an Ar atmosphere, the NHA nanoparticles decompose to form a composite nanostructure comprising sub-10 nm Ni/NiOx and carbon nanodomains. The optimised hybrid system exhibited a 37-fold increase in photocatalytic H2 evolution activity compared to pristine TiO2 under UV light irradiation. Analysis of band edge potentials revealed a downward shift in the conduction band minimum, facilitating more efficient reduction processes. In contrast, a control sample prepared using Ni(NO3)2 resulted in inactive NiOx domains and poor interfacial bonding, leading to suppressed activity. These findings demonstrate that NHA-derived cocatalysts provide a versatile platform for constructing noble-metal-free photocatalytic systems through controlled interfacial nanostructuring, offering new avenues for designing advanced solar-to-fuel materials.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"23 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr02166a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient and noble-metal-free photocatalysts for hydrogen evolution is a central challenge in solar fuel production. Herein, we report a strategy to enhance the photocatalytic activity of rutile TiO2 by immobilising nickel hydroxide acrylate (NHA) nanoparticles, which serve as thermally convert cocatalyst precursors. Upon heat-treatment under an Ar atmosphere, the NHA nanoparticles decompose to form a composite nanostructure comprising sub-10 nm Ni/NiOx and carbon nanodomains. The optimised hybrid system exhibited a 37-fold increase in photocatalytic H2 evolution activity compared to pristine TiO2 under UV light irradiation. Analysis of band edge potentials revealed a downward shift in the conduction band minimum, facilitating more efficient reduction processes. In contrast, a control sample prepared using Ni(NO3)2 resulted in inactive NiOx domains and poor interfacial bonding, leading to suppressed activity. These findings demonstrate that NHA-derived cocatalysts provide a versatile platform for constructing noble-metal-free photocatalytic systems through controlled interfacial nanostructuring, offering new avenues for designing advanced solar-to-fuel materials.
二氧化钛固载丙烯酸金属氢氧化物纳米颗粒对无贵金属光催化制氢的热转化研究。
开发高效、无贵金属的析氢光催化剂是太阳能燃料生产的核心挑战。在此,我们报道了一种通过固定氢氧化镍丙烯酸酯(NHA)纳米颗粒来增强金红石型TiO2光催化活性的策略,该纳米颗粒作为热转化助催化剂前体。在Ar气氛下热处理后,NHA纳米颗粒分解形成由亚10 nm的Ni/NiOx和碳纳米结构域组成的复合纳米结构。与原始TiO2相比,优化后的混合体系在紫外光照射下的光催化析氢活性提高了37倍。对带边缘电位的分析表明,导带最小值向下移动,有利于更有效的还原过程。相反,使用Ni(NO3)2制备的对照样品导致NiOx结构域失活,界面结合不良,导致活性抑制。这些发现表明,nha衍生的共催化剂为通过控制界面纳米结构构建无贵金属光催化体系提供了一个通用平台,为设计先进的太阳能燃料材料提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信