Neural mechanisms underlying the recovery of voluntary control of motoneurons after paralysis with spinal cord stimulation.

IF 15 1区 医学 Q1 NEUROSCIENCES
Josep-Maria Balaguer, Genis Prat-Ortega, Julia Ostrowski, Luigi Borda, Nikhil Verma, Prakarsh Yadav, Erynn Sorensen, Roberto de Freitas, Scott Ensel, Serena Donadio, Lucy Liang, Jonathan Ho, Arianna Damiani, Erinn M Grigsby, Daryl P Fields, Jorge A Gonzalez-Martinez, Peter C Gerszten, Lee E Fisher, Douglas J Weber, Elvira Pirondini, Marco Capogrosso
{"title":"Neural mechanisms underlying the recovery of voluntary control of motoneurons after paralysis with spinal cord stimulation.","authors":"Josep-Maria Balaguer, Genis Prat-Ortega, Julia Ostrowski, Luigi Borda, Nikhil Verma, Prakarsh Yadav, Erynn Sorensen, Roberto de Freitas, Scott Ensel, Serena Donadio, Lucy Liang, Jonathan Ho, Arianna Damiani, Erinn M Grigsby, Daryl P Fields, Jorge A Gonzalez-Martinez, Peter C Gerszten, Lee E Fisher, Douglas J Weber, Elvira Pirondini, Marco Capogrosso","doi":"10.1016/j.neuron.2025.08.023","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord stimulation (SCS) improves motor control after paralysis. This evidence led to the hypothesis that SCS facilitates residual supraspinal inputs to spinal motoneurons. Here, we demonstrate that this hypothesis is not supported by experimental evidence. Instead, we show that residual supraspinal inputs modulate motoneurons' membrane potential to transform subthreshold SCS pulses into suprathreshold action potentials, thereby entraining motoneuron activity to SCS. Despite this entrainment, residual supraspinal inputs can control motoneuron firing rates by modulating the number of subthreshold SCS pulses transformed into action potentials, resulting in volitional modulation of motor output for a restricted set of SCS parameters. Furthermore, we predict that residual supraspinal inhibitory drive can silence unwanted suprathreshold motoneuron activity, enlarging the functional set of SCS parameters. Finally, we demonstrate that this set of functional stimulation parameters is further restricted by lesion severity, highlighting an intrinsic limitation of SCS in cases of severe injury.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.08.023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord stimulation (SCS) improves motor control after paralysis. This evidence led to the hypothesis that SCS facilitates residual supraspinal inputs to spinal motoneurons. Here, we demonstrate that this hypothesis is not supported by experimental evidence. Instead, we show that residual supraspinal inputs modulate motoneurons' membrane potential to transform subthreshold SCS pulses into suprathreshold action potentials, thereby entraining motoneuron activity to SCS. Despite this entrainment, residual supraspinal inputs can control motoneuron firing rates by modulating the number of subthreshold SCS pulses transformed into action potentials, resulting in volitional modulation of motor output for a restricted set of SCS parameters. Furthermore, we predict that residual supraspinal inhibitory drive can silence unwanted suprathreshold motoneuron activity, enlarging the functional set of SCS parameters. Finally, we demonstrate that this set of functional stimulation parameters is further restricted by lesion severity, highlighting an intrinsic limitation of SCS in cases of severe injury.

脊髓刺激麻痹后运动神经元自主控制恢复的神经机制。
脊髓刺激(SCS)改善瘫痪后的运动控制。这一证据导致假设,SCS促进残余的脊髓上输入脊髓运动神经元。在这里,我们证明这一假设是不支持的实验证据。相反,我们发现残留的棘上输入调节运动神经元的膜电位,将阈下SCS脉冲转化为阈上动作电位,从而将运动神经元的活动带入SCS。尽管存在这种干扰,但残留的棘上输入可以通过调节转化为动作电位的阈下SCS脉冲的数量来控制运动神经元的放电速率,从而对一组有限的SCS参数进行运动输出的意志调节。此外,我们预测残留的棘上抑制驱动可以抑制不必要的阈上运动神经元活动,扩大SCS参数的功能集。最后,我们证明了这组功能刺激参数进一步受到病变严重程度的限制,突出了SCS在严重损伤情况下的内在局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信