OcuMDNet: A lightweight CNN for robust multi-disease retinal diagnosis with cross-dataset reliability

IF 2.7 2区 医学 Q1 OPHTHALMOLOGY
Qianjie Yang , Vijay Govindarajan , Qiyuan Li , Heding Zhou , Zaffar Ahmed Shaikh , Amel Ksibi , Jing Yang , Lip Yee Por
{"title":"OcuMDNet: A lightweight CNN for robust multi-disease retinal diagnosis with cross-dataset reliability","authors":"Qianjie Yang ,&nbsp;Vijay Govindarajan ,&nbsp;Qiyuan Li ,&nbsp;Heding Zhou ,&nbsp;Zaffar Ahmed Shaikh ,&nbsp;Amel Ksibi ,&nbsp;Jing Yang ,&nbsp;Lip Yee Por","doi":"10.1016/j.exer.2025.110642","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to develop a lightweight convolutional network for the classification of multiple retinal diseases using fundus images and to evaluate cross-dataset generalization under strict label alignment. We introduce OcuMDNet (Ocular Multi-Disease Net), a compact convolutional neural network (CNN) specifically designed for fundus imagery, incorporating batch normalization and dropout for regularization. A standardized processing pipeline is employed, which includes cropping and resizing images to 224 × 224 pixels, applying contrast-limited adaptive histogram equalization (CLAHE), and performing per-channel normalization. The training process utilizes the AdamW optimizer and incorporates early stopping to enhance model performance. We propose a label-aligned evaluation protocol: (i) assesses 4-class performance (Normal, diabetic retinopathy (DR), Glaucoma, age-related macular degeneration (AMD)) on a combined dataset assembled from public sources; (ii) reports disease-specific results based on the native labels of each dataset (DR: EyePACS, Messidor; Glaucoma: ORIGA; AMD: AREDS); and (iii) evaluates cross-dataset transfer for DR (training on EyePACS and testing on Messidor). Patient-level splits are implemented to prevent data leakage, and class counts are reported for each split. Performance metrics such as accuracy, macro-F1 score, and one-vs-rest ROC-AUC are calculated with 95 % confidence intervals using stratified bootstrap (n = 1000). Paired comparisons are conducted using McNemar's test for accuracy and DeLong's method for AUC, with multiplicity control applied. The OcuMDNet demonstrates strong performance on both combined and disease-specific benchmarks, maintaining robust discrimination in cross-dataset evaluations for DR while ensuring computational efficiency suitable for large-scale screening applications. Ablation studies confirm the significance of preprocessing steps and architectural choices. In conjunction with a label-aligned protocol, the OcuMDNet provides an accurate and efficient baseline for multi-disease fundus analysis, facilitating a transparent assessment of cross-dataset reliability. The code, scripts, and trained weights will be made available to support reproducibility.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"261 ","pages":"Article 110642"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483525004142","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop a lightweight convolutional network for the classification of multiple retinal diseases using fundus images and to evaluate cross-dataset generalization under strict label alignment. We introduce OcuMDNet (Ocular Multi-Disease Net), a compact convolutional neural network (CNN) specifically designed for fundus imagery, incorporating batch normalization and dropout for regularization. A standardized processing pipeline is employed, which includes cropping and resizing images to 224 × 224 pixels, applying contrast-limited adaptive histogram equalization (CLAHE), and performing per-channel normalization. The training process utilizes the AdamW optimizer and incorporates early stopping to enhance model performance. We propose a label-aligned evaluation protocol: (i) assesses 4-class performance (Normal, diabetic retinopathy (DR), Glaucoma, age-related macular degeneration (AMD)) on a combined dataset assembled from public sources; (ii) reports disease-specific results based on the native labels of each dataset (DR: EyePACS, Messidor; Glaucoma: ORIGA; AMD: AREDS); and (iii) evaluates cross-dataset transfer for DR (training on EyePACS and testing on Messidor). Patient-level splits are implemented to prevent data leakage, and class counts are reported for each split. Performance metrics such as accuracy, macro-F1 score, and one-vs-rest ROC-AUC are calculated with 95 % confidence intervals using stratified bootstrap (n = 1000). Paired comparisons are conducted using McNemar's test for accuracy and DeLong's method for AUC, with multiplicity control applied. The OcuMDNet demonstrates strong performance on both combined and disease-specific benchmarks, maintaining robust discrimination in cross-dataset evaluations for DR while ensuring computational efficiency suitable for large-scale screening applications. Ablation studies confirm the significance of preprocessing steps and architectural choices. In conjunction with a label-aligned protocol, the OcuMDNet provides an accurate and efficient baseline for multi-disease fundus analysis, facilitating a transparent assessment of cross-dataset reliability. The code, scripts, and trained weights will be made available to support reproducibility.
OcuMDNet:一种轻量级的神经网络,用于鲁棒多疾病视网膜诊断,具有跨数据集可靠性。
本研究旨在开发一种轻量级的卷积网络,用于使用眼底图像对多种视网膜疾病进行分类,并评估严格标签对齐下的跨数据集泛化。我们介绍了OcuMDNet(眼部多疾病网络),这是一个专门为眼底图像设计的紧凑卷积神经网络(CNN),结合了批处理归一化和dropout进行正则化。采用标准化的处理管道,其中包括裁剪和调整图像到224×224像素,应用对比度有限的自适应直方图均衡化(CLAHE),并执行每个通道的归一化。训练过程利用AdamW优化器,并结合早期停止来提高模型性能。我们提出了一个标签对齐的评估方案:(i)评估4类性能(正常,糖尿病视网膜病变(DR),青光眼,年龄相关性黄斑变性(AMD))在一个来自公共资源的组合数据集上;(ii)报告基于每个数据集的本地标签的疾病特异性结果(DR: EyePACS, Messidor;青光眼:ORIGA; AMD: AREDS);(iii)评估DR的跨数据集传输(在EyePACS上的训练和在Messidor上的测试)。实现患者级拆分以防止数据泄漏,并且为每次拆分报告类计数。使用分层bootstrap (n=1000)以95%置信区间计算精度、宏观f1分数和1 -vs-rest ROC-AUC等性能指标。使用McNemar的准确性测试和DeLong的AUC方法进行配对比较,并采用多重控制。OcuMDNet在综合基准和特定疾病基准上都表现出了强大的性能,在DR的跨数据集评估中保持了强大的辨别能力,同时确保了适合大规模筛选应用的计算效率。消融研究证实了预处理步骤和结构选择的重要性。OcuMDNet与标签一致的协议相结合,为多疾病眼底分析提供了准确有效的基线,促进了跨数据集可靠性的透明评估。代码、脚本和训练过的权重将可用来支持再现性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental eye research
Experimental eye research 医学-眼科学
CiteScore
6.80
自引率
5.90%
发文量
323
审稿时长
66 days
期刊介绍: The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信