Liquid Ga nanodroplet-templated heteroepitaxy of MAPbI3 for high-efficiency printable mesoscopic perovskite solar cells.

IF 21.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jianhong Zhao, Tong Zhou, Tianwei He, Nan Yang, Mingpeng Chen, Hang Yang, Jin Zhang, Yumin Zhang, Wenhua Zhang, Guangzhi Hu, Qingju Liu
{"title":"Liquid Ga nanodroplet-templated heteroepitaxy of MAPbI<sub>3</sub> for high-efficiency printable mesoscopic perovskite solar cells.","authors":"Jianhong Zhao, Tong Zhou, Tianwei He, Nan Yang, Mingpeng Chen, Hang Yang, Jin Zhang, Yumin Zhang, Wenhua Zhang, Guangzhi Hu, Qingju Liu","doi":"10.1016/j.scib.2025.09.006","DOIUrl":null,"url":null,"abstract":"<p><p>Precise control over microstructure and crystallinity of perovskite films is pivotal for achieving high-performance solar cells. However, realizing large-grained and preferentially oriented perovskite crystals remains particularly challenging in printable mesoscopic architectures. Herein, we present a liquid-metal-enabled heteroepitaxial strategy to regulate MAPbI<sub>3</sub> crystallization on Ga<sub>2</sub>O<sub>3</sub> surfaces derived from Ga nanodroplets. Structural modeling and atomic-resolution transmission electron microscope (TEM) analysis reveal an exceptional lattice match between the (110) planes of MAPbI<sub>3</sub> and the exposed Ga<sub>2</sub>O<sub>3</sub> facets, with an ultralow mismatch of merely 0.32 %. This near-perfect lattice alignment drives the formation of orientation-controlled MAPbI<sub>3</sub> crystals within the mesoporous scaffold. Moreover, the epitaxial interface establishes type-II band alignment that accelerates charge extraction while suppressing interfacial recombination. The resultant printable mesoscopic perovskite solar cells achieve a champion power conversion efficiency (PCE) of 20.2 % (AM1.5G), representing a 16 % enhancement over conventional non-epitaxial counterparts. Crucially, the devices demonstrate exceptional operational stability, retaining 97 % of initial PCE after 3000 h of maximum power point tracking under harsh conditions (55 ± 5 °C, 85 % RH).</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":21.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2025.09.006","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Precise control over microstructure and crystallinity of perovskite films is pivotal for achieving high-performance solar cells. However, realizing large-grained and preferentially oriented perovskite crystals remains particularly challenging in printable mesoscopic architectures. Herein, we present a liquid-metal-enabled heteroepitaxial strategy to regulate MAPbI3 crystallization on Ga2O3 surfaces derived from Ga nanodroplets. Structural modeling and atomic-resolution transmission electron microscope (TEM) analysis reveal an exceptional lattice match between the (110) planes of MAPbI3 and the exposed Ga2O3 facets, with an ultralow mismatch of merely 0.32 %. This near-perfect lattice alignment drives the formation of orientation-controlled MAPbI3 crystals within the mesoporous scaffold. Moreover, the epitaxial interface establishes type-II band alignment that accelerates charge extraction while suppressing interfacial recombination. The resultant printable mesoscopic perovskite solar cells achieve a champion power conversion efficiency (PCE) of 20.2 % (AM1.5G), representing a 16 % enhancement over conventional non-epitaxial counterparts. Crucially, the devices demonstrate exceptional operational stability, retaining 97 % of initial PCE after 3000 h of maximum power point tracking under harsh conditions (55 ± 5 °C, 85 % RH).

液态Ga纳米微滴模板MAPbI3异质外延制备高效可印刷介观钙钛矿太阳能电池。
精确控制钙钛矿薄膜的微观结构和结晶度是实现高性能太阳能电池的关键。然而,在可打印的介观结构中,实现大晶粒和优先取向的钙钛矿晶体仍然是特别具有挑战性的。在此,我们提出了一种液态金属异质外延策略来调节来自Ga纳米液滴的Ga2O3表面上的MAPbI3结晶。结构建模和原子分辨率透射电子显微镜(TEM)分析显示,MAPbI3的(110)面与暴露的Ga2O3面之间的晶格匹配异常,其失配率仅为0.32%。这种近乎完美的晶格排列驱动了介孔支架内取向控制的MAPbI3晶体的形成。此外,外延界面建立了ii型带对准,加速了电荷提取,同时抑制了界面复合。由此产生的可印刷介观钙钛矿太阳能电池的功率转换效率(PCE)达到20.2% (AM1.5G),比传统的非外延型太阳能电池提高了16%。至关重要的是,这些器件表现出卓越的运行稳定性,在恶劣条件下(55±5°C, 85% RH),在最大功率点跟踪3000小时后,保持了97%的初始PCE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Bulletin
Science Bulletin MULTIDISCIPLINARY SCIENCES-
CiteScore
24.60
自引率
2.10%
发文量
8092
期刊介绍: Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信